IDEAS home Printed from https://ideas.repec.org/a/adr/anecst/y1993i29p175-205.html
   My bibliography  Save this article

The Joint Estimation of a Non-Linear Labour Supply Function and a Wage Equation Using Simulated Response Probabilities

Author

Listed:
  • Hans G. Bloemen
  • Arie Kapteyn

Abstract

When applying maximum likelihood estimation in jointly estimating a labour supply function and a wage equation, it may be practically impossible, both analytically and numerically, to calculate the required response probabilities, especially if the model is non-linear. As an alternative, we consider various simulation estimators. In both Monte Carlo experiments and empirical applications the methods are compared to each other and to ML. The methods are computationally feasible and perform well.

Suggested Citation

  • Hans G. Bloemen & Arie Kapteyn, 1993. "The Joint Estimation of a Non-Linear Labour Supply Function and a Wage Equation Using Simulated Response Probabilities," Annals of Economics and Statistics, GENES, issue 29, pages 175-205.
  • Handle: RePEc:adr:anecst:y:1993:i:29:p:175-205
    as

    Download full text from publisher

    File URL: http://www.jstor.org/stable/20075901
    Download Restriction: no
    ---><---

    Other versions of this item:

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Vassilis A. Hajivassiliou, 1991. "Simulation Estimation Methods for Limited Dependent Variable Models," Cowles Foundation Discussion Papers 1007, Cowles Foundation for Research in Economics, Yale University.
    2. Hajivassiliou, Vassilis A. & Ruud, Paul A., 1986. "Classical estimation methods for LDV models using simulation," Handbook of Econometrics, in: R. F. Engle & D. McFadden (ed.), Handbook of Econometrics, edition 1, volume 4, chapter 40, pages 2383-2441, Elsevier.
    3. Hans G. Bloemen & Arie Kapteyn, 2008. "The estimation of utility-consistent labor supply models by means of simulated scores," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 23(4), pages 395-422.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:adr:anecst:y:1993:i:29:p:175-205. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Secretariat General or Laurent Linnemer (email available below). General contact details of provider: https://edirc.repec.org/data/ensaefr.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.