IDEAS home Printed from https://ideas.repec.org/a/adp/ijesnr/v16y2019i1p25-32.html
   My bibliography  Save this article

Effect of Growth Stage Moisture Stress on Common Bean (Phaseolus Vulgaris L.) Yield and Water Productivity at Jimma, Ethiopia

Author

Listed:
  • Robel Admasu
  • Addisu Asefa
  • Minda Tadesse

    (Jimma Agricultural Research Center, Ethiopia)

Abstract

Water stress is a major crop production constraint for common bean (Phaseolus vulgaris L.). This study investigated the response of common bean (Phaseolus vulgaris L.) to moisture stress at different growth stages for yield and water productivity under sub-humid climate conditions over a three-year period. A field experiment was conducted at Jimma Agricultural Research. A randomized complete block design with three replications was used. fifteen treatments which combined and imposed at four growth stages were used. The combined result indicated that there were a significant variation among treatments for yield, above ground dry biomass and water productivity. The yield of common bean was significantly affected due to moisture stress imposed at different growth stages.

Suggested Citation

  • Robel Admasu & Addisu Asefa & Minda Tadesse, 2019. "Effect of Growth Stage Moisture Stress on Common Bean (Phaseolus Vulgaris L.) Yield and Water Productivity at Jimma, Ethiopia," International Journal of Environmental Sciences & Natural Resources, Juniper Publishers Inc., vol. 16(1), pages 25-32, January.
  • Handle: RePEc:adp:ijesnr:v:16:y:2019:i:1:p:25-32
    DOI: 10.19080/IJESNR.2019.16.555929
    as

    Download full text from publisher

    File URL: https://juniperpublishers.com/ijesnr/pdf/IJESNR.MS.ID.555929.pdf
    Download Restriction: no

    File URL: https://juniperpublishers.com/ijesnr/IJESNR.MS.ID.555929.php
    Download Restriction: no

    File URL: https://libkey.io/10.19080/IJESNR.2019.16.555929?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Ali, M.H. & Talukder, M.S.U., 2008. "Increasing water productivity in crop production--A synthesis," Agricultural Water Management, Elsevier, vol. 95(11), pages 1201-1213, November.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. GhassemiSahebi, Fakhroddin & Mohammadrezapour, Omolbani & Delbari, Masoomeh & KhasheiSiuki, Abbas & Ritzema, Henk & Cherati, Ali, 2020. "Effect of utilization of treated wastewater and seawater with Clinoptilolite-Zeolite on yield and yield components of sorghum," Agricultural Water Management, Elsevier, vol. 234(C).
    2. Andarzian, B. & Bannayan, M. & Steduto, P. & Mazraeh, H. & Barati, M.E. & Barati, M.A. & Rahnama, A., 2011. "Validation and testing of the AquaCrop model under full and deficit irrigated wheat production in Iran," Agricultural Water Management, Elsevier, vol. 100(1), pages 1-8.
    3. Abdul Rehman & Luan Jingdong, 2017. "An econometric analysis of major Chinese food crops: An empirical study," Cogent Economics & Finance, Taylor & Francis Journals, vol. 5(1), pages 1323372-132, January.
    4. Kadaja, Jüri & Saue, Triin, 2016. "Potential effects of different irrigation and drainage regimes on yield and water productivity of two potato varieties under Estonian temperate climate," Agricultural Water Management, Elsevier, vol. 165(C), pages 61-71.
    5. Zang, Zhennan & Zhang, Xiaofan & Mu, Tianqi & Yao, Leilei & Ji, Chunwei & Yang, Qiliang & Liang, Jiaping & Li, Na & Wang, Haidong & Guo, Jinjin & Yang, Ling, 2024. "Combined effects of rain-shelter cultivation and deficit micro-sprinkler irrigation practice on yield, nutrient uptake, economic benefit and water productivity of Panax notoginseng in a semi-arid regi," Agricultural Water Management, Elsevier, vol. 293(C).
    6. Li, Xiaolin & Tong, Ling & Niu, Jun & Kang, Shaozhong & Du, Taisheng & Li, Sien & Ding, Risheng, 2017. "Spatio-temporal distribution of irrigation water productivity and its driving factors for cereal crops in Hexi Corridor, Northwest China," Agricultural Water Management, Elsevier, vol. 179(C), pages 55-63.
    7. Panagiotis Christias & Ioannis N. Daliakopoulos & Thrassyvoulos Manios & Mariana Mocanu, 2020. "Comparison of Three Computational Approaches for Tree Crop Irrigation Decision Support," Mathematics, MDPI, vol. 8(5), pages 1-26, May.
    8. Amarasingha, R.P.R.K. & Suriyagoda, L.D.B. & Marambe, B. & Gaydon, D.S. & Galagedara, L.W. & Punyawardena, R. & Silva, G.L.L.P. & Nidumolu, U. & Howden, M., 2015. "Simulation of crop and water productivity for rice (Oryza sativa L.) using APSIM under diverse agro-climatic conditions and water management techniques in Sri Lanka," Agricultural Water Management, Elsevier, vol. 160(C), pages 132-143.
    9. Darzi-Naftchali, Abdullah & Ritzema, Henk & Karandish, Fatemeh & Mokhtassi-Bidgoli, Ali & Ghasemi-Nasr, Mohammad, 2017. "Alternate wetting and drying for different subsurface drainage systems to improve paddy yield and water productivity in Iran," Agricultural Water Management, Elsevier, vol. 193(C), pages 221-231.
    10. Yong Wu & Binbing Guo & Xiaoli Zhang & Hongbin Luo & Zhibo Yu & Huipeng Li & Kaize Shi & Leiguang Wang & Weiheng Xu & Guanglong Ou, 2024. "Response of Hydrothermal Conditions to the Saturation Values of Forest Aboveground Biomass Estimation by Remote Sensing in Yunnan Province, China," Land, MDPI, vol. 13(9), pages 1-16, September.
    11. Yan, Nana & Wu, Bingfang, 2014. "Integrated spatial–temporal analysis of crop water productivity of winter wheat in Hai Basin," Agricultural Water Management, Elsevier, vol. 133(C), pages 24-33.
    12. Bueno, C.S. & Bucourt, M. & Kobayashi, N. & Inubushi, K. & Lafarge, T., 2010. "Water productivity of contrasting rice genotypes grown under water-saving conditions in the tropics and investigation of morphological traits for adaptation," Agricultural Water Management, Elsevier, vol. 98(2), pages 241-250, December.
    13. de Almeida, Ailson Maciel & Coelho, Rubens Duarte & da Silva Barros, Timóteo Herculino & de Oliveira Costa, Jéfferson & Quiloango-Chimarro, Carlos Alberto & Moreno-Pizani, Maria Alejandra & Farias-Ram, 2022. "Water productivity and canopy thermal response of pearl millet subjected to different irrigation levels," Agricultural Water Management, Elsevier, vol. 272(C).
    14. Ahmad, Mirza Junaid & Iqbal, Muhammad Anjum & Choi, Kyung Sook, 2020. "Climate-driven constraints in sustaining future wheat yield and water productivity," Agricultural Water Management, Elsevier, vol. 231(C).
    15. Tari, Ali Fuat, 2016. "The effects of different deficit irrigation strategies on yield, quality, and water-use efficiencies of wheat under semi-arid conditions," Agricultural Water Management, Elsevier, vol. 167(C), pages 1-10.
    16. Mustafa, S.M.T. & Vanuytrecht, E. & Huysmans, M., 2017. "Combined deficit irrigation and soil fertility management on different soil textures to improve wheat yield in drought-prone Bangladesh," Agricultural Water Management, Elsevier, vol. 191(C), pages 124-137.
    17. Wei Qu & Yanmei Tan & Zhentao Li & Eefje Aarnoudse & Qin Tu, 2020. "Agricultural Water Use Efficiency—A Case Study of Inland-River Basins in Northwest China," Sustainability, MDPI, vol. 12(23), pages 1-18, December.
    18. García-Tejero, I. & Romero-Vicente, R. & Jiménez-Bocanegra, J.A. & Martínez-García, G. & Durán-Zuazo, V.H. & Muriel-Fernández, J.L., 2010. "Response of citrus trees to deficit irrigation during different phenological periods in relation to yield, fruit quality, and water productivity," Agricultural Water Management, Elsevier, vol. 97(5), pages 689-699, May.
    19. Mondol, Md Anarul Haque & Zhu, Xuan & Dunkerley, David & Henley, Benjamin J., 2022. "Changing occurrence of crop water surplus or deficit and the impact of irrigation: An analysis highlighting consequences for rice production in Bangladesh," Agricultural Water Management, Elsevier, vol. 269(C).
    20. Seijger, Chris & Chukalla, Abebe & Bremer, Karin & Borghuis, Gerlo & Christoforidou, Maria & Mul, Marloes & Hellegers, Petra & van Halsema, Gerardo, 2023. "Agronomic analysis of WaPOR applications: Confirming conservative biomass water productivity in inherent and climatological variance of WaPOR data outputs," Agricultural Systems, Elsevier, vol. 211(C).

    More about this item

    Keywords

    earth and environment journals; environment journals; open access environment journals; peer reviewed environmental journals; open access; juniper publishers; ournal of Environmental Sciences; juniper publishers journals ; juniper publishers reivew;
    All these keywords.

    JEL classification:

    • R00 - Urban, Rural, Regional, Real Estate, and Transportation Economics - - General - - - General
    • Z0 - Other Special Topics - - General

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:adp:ijesnr:v:16:y:2019:i:1:p:25-32. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Robert Thomas (email available below). General contact details of provider: .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.