IDEAS home Printed from https://ideas.repec.org/a/adm/journl/v3y2014i10p35-54.html
   My bibliography  Save this article

The Derivation of Interval Type-2 Fuzzy Sets and Systems on Continuous Domain: Theory and Applications to Heart Diseases

Author

Listed:
  • Rana Waleed Hndoosh
  • M. S. Saroa
  • Sanjeev Kumar

Abstract

An overview and a derivation of interval type-2 fussy logic system (IT2 FLS), which can handle rule’s uncer-tainties on continuous domain, having good number of applications in real world. This work focused on the performance of an IT2 FLS that involves the operations of fuzzification, inference, and output processing. The output processing consists of Type-Reduction (TR) and defuzzification. This work made IT2 FLS much more accessible to FLS modelers, because it provides mathematical formulation for calculating the deriva-tives. Presenting extend to representation of T2 FSs on continuous domain and using it to derive formulas for operations, we developed and extended the derivation of the union of two IT2 FSs to the derivation of the intersection and union of N-IT2 FSs that is based on various concepts. The derivation of all the formulas that are related with an IT2 and these formulas depend on continuous domain with multiple rules. Each rule has multiple antecedents that are activated by a crisp number with T2 singleton fuzzification (SF). Then, we have shown how those results can be extended to T2 non-singleton fuzzification (NSF). We are derived the relationship between the consequent and the domain of uncertainty (DOU) of the T2 fired output FS. As well as, provide the derivation of the general form at continuous domain to calculate the different kinds of type-reduced. We have also applied an IT2 FLS to medical application of Heart Diseases (HDs) and an IT2 pro-vide rather modest performance improvements over the T1 predictor. Finally, we made a comparison of HDs result between IT2 FLS using the IT2FLS in MATLAB and the IT2 FLS in Visual C# models with T1 FISs (Mamda-ni, and Takagi-Sugeno).

Suggested Citation

  • Rana Waleed Hndoosh & M. S. Saroa & Sanjeev Kumar, 2014. "The Derivation of Interval Type-2 Fuzzy Sets and Systems on Continuous Domain: Theory and Applications to Heart Diseases," International Journal of Sciences, Office ijSciences, vol. 3(10), pages 35-54, October.
  • Handle: RePEc:adm:journl:v:3:y:2014:i:10:p:35-54
    as

    Download full text from publisher

    File URL: https://www.ijsciences.com/pub/article/576
    Download Restriction: no

    File URL: https://www.ijsciences.com/pub/pdf/V320141008.pdf
    Download Restriction: no
    ---><---

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:adm:journl:v:3:y:2014:i:10:p:35-54. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Staff ijSciences (email available below). General contact details of provider: .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.