IDEAS home Printed from https://ideas.repec.org/a/ack/journl/y2024id978.html
   My bibliography  Save this article

Modeling the risk of bank default

Author

Listed:
  • Marija A. Shchepeleva
  • Kajrat Tusipkaliev
  • Mihail I. Stolbov

Abstract

This paper is devoted to modeling the probability of default of Russian banks in 2015–2020. There are relatively few studies on defaults of Russian banks after 2015, and our work intends to partly fill this gap. The purpose of this research is to determine the main variables which significantly impact the risk of default of Russian banks. The work seeks to identify additional factors associated with an increased risk of bank defaults during a relatively stable period of development of the Russian economy (2015–2020) without external shocks, such as COVID‑19 or international sanctions. We apply an integrated approach to modeling the risk of bank defaults. Empirical methodology is represented by logit and probit models, as well as Cox regression. The set of potential predictors for bank defaults include the variables, characterizing various aspects of credit institutions functioning (in accordance with the CAMELS system), as well as macroeconomic variables. The most significant predictors of default turn out to be the capital adequacy ratio N1, bank net assets, the ratio of total loans to assets and the size of secured loan portfolio. In general, the results we obtain are consistent with the CAMELS system of indicators assessing the sustainability of commercial banks, while the impact of macroeconomic indicators tends to be insignificant. The results of the study could be of interest to the regulator both for the purposes of ongoing monitoring of financial stability as well as for default risk prevention; to credit institutions which elaborate internal systems for monitoring their financial soundness; and to financial market participants to select the most stable companies in terms of investment and allocation of funds. Further directions of research are related to the inclusion of a crisis period into the analysis and comparing the set of significant predictors for bank defaults during a crisis and a stable period of economic development, as well as the use of alternative methods, in particular, machine learning algorithms.

Suggested Citation

  • Marija A. Shchepeleva & Kajrat Tusipkaliev & Mihail I. Stolbov, 2024. "Modeling the risk of bank default," Economics of Contemporary Russia, Regional Public Organization for Assistance to the Development of Institutions of the Department of Economics of the Russian Academy of Sciences, issue 2.
  • Handle: RePEc:ack:journl:y:2024:id:978
    DOI: 10.33293/1609-1442-2024-2(105)-101-124
    as

    Download full text from publisher

    File URL: https://www.ecr-journal.ru/jour/article/viewFile/978/586
    Download Restriction: no

    File URL: https://libkey.io/10.33293/1609-1442-2024-2(105)-101-124?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ack:journl:y:2024:id:978. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Ð ÐµÐ´Ð°ÐºÑ†Ð¸Ñ (email available below). General contact details of provider: .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.