Author
Listed:
- Natalia Kamanina
(Vavilov State Optical Institute, St.- Petersburg, Russia; St.-Petersburg Electrotechnical University (“LETI”), St.-Petersburg)
Abstract
It is well known that the optical materials are unique and perspective. Optical materials and the devices based on them are operated in the broad spectral range: In the UV spectral range (where the wavelength l is approximately placed in the range of ~ 0.1 - 0.4 microns), in the VIS spectral range (l ~ 0.5 - 0.75 microns), and in the IR spectral range (l is larger than the 0.75-1 microns). These materials can be considered to resolve the different complicated tasks. To study optical materials different techniques and methods should be scrupulously used. Among different applied methods namely the laser oriented technique and nanostructuration approach have some unique features. It can be considered as the effective dominant approach in order to reveal the change of all basic physical-chemical characteristics of the materials. Our own steps in this direction have partially been recently shown too. In the current paper, advantages of the modification of optical material surfaces via a nanotechnology approach will be shown. The surface relief change provokes the spectral, mechanical and wetting phenomena changes. A CO2-laser is applied to modify the optical materials surfaces under the condition when the carbon nanotubes are deposited in vertical position at the materials surfaces. This process permits to organize covalent bonding between the carbon atoms and the model matrix ones. An emphasis will be given on the surface modifications of the materials, such as: LiF, CaF2, KBr, BaF2, Sc, some polymer surface, etc. Mechanisms responsible for the spectral characteristics change, mechanical hardness as well as the increase of the wetting angle will be discussed. The area of the application of the materials studied can be increased.
Suggested Citation
Natalia Kamanina, 2018.
"Nanotechnology In Optics,"
CBU International Conference Proceedings, ISE Research Institute, vol. 6(0), pages 1114-1120, September.
Handle:
RePEc:aad:iseicj:v:6:y:2018:i:0:p:1114-1120
DOI: 10.12955/cbup.v6.1302
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:aad:iseicj:v:6:y:2018:i:0:p:1114-1120. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Petr Hájek (email available below). General contact details of provider: https://ojs.journals.cz/index.php/CBUIC .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.