IDEAS home Printed from https://ideas.repec.org/a/aad/iseicj/v6y2018i0p1062-1070.html
   My bibliography  Save this article

Exercise Of Machine Learning Using Some Python Tools And Techniques

Author

Listed:
  • Ertan Mustafa Geldiev

    (Varna University of Management, PhD student in University of Shumen)

  • Nayden Valkov Nenkov

    (Konstantin Preslavsky University of Shumen)

  • Mariana Mateeva Petrova

    ("St.Cyril and St.Methodius" University of VelikoTarnovo)

Abstract

One of the goals of predictive analytics training using Python tools is to create a "Model" from classified examples that classifies new examples from a Dataset. The purpose of different strategies and experiments is to create a more accurate prediction model. The goals we set out in the study are to achieve successive steps to find an accurate model for a dataset and preserving it for its subsequent use using the python instruments. Once we have found the right model, we save it and load it later, to classify if we have "phishing" in our case. In the case that the path we reach to the discovery of the search model, we can ask ourselves how much we can automate everything and whether a computer program can be written to automatically go through the unified steps and to find the right model? Due to the fact that the steps for finding the exact model are often unified and repetitive for different types of data, we have offered a hypothetical algorithm that could write a complex computer program searching for a model, for example when we have a classification task. This algorithm is rather directional and does not claim to be all-encompassing. The research explores some features of Python Scientific Python Packages like Numpy, Pandas, Matplotlib, Scipy and scycit-learn to create a more accurate model. The Dataset used for the research was downloaded free from the UCI Machine Learning Repository (UCI Machine Learning Repository, 2017).

Suggested Citation

  • Ertan Mustafa Geldiev & Nayden Valkov Nenkov & Mariana Mateeva Petrova, 2018. "Exercise Of Machine Learning Using Some Python Tools And Techniques," CBU International Conference Proceedings, ISE Research Institute, vol. 6(0), pages 1062-1070, September.
  • Handle: RePEc:aad:iseicj:v:6:y:2018:i:0:p:1062-1070
    DOI: 10.12955/cbup.v6.1295
    as

    Download full text from publisher

    File URL: https://ojs.journals.cz/index.php/CBUIC/article/view/1295/1837
    Download Restriction: no

    File URL: https://libkey.io/10.12955/cbup.v6.1295?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Andrey Zahariev & Mikhail Zveryаkov & Stoyan Prodanov & Galina Zaharieva & Petko Angelov & Silvia Zarkova & Mariana Petrova, 2020. "Debt management evaluation through Support Vector Machines: on the example of Italy and Greece," Entrepreneurship and Sustainability Issues, VsI Entrepreneurship and Sustainability Center, vol. 7(3), pages 2382-2393, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:aad:iseicj:v:6:y:2018:i:0:p:1062-1070. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Petr Hájek (email available below). General contact details of provider: https://ojs.journals.cz/index.php/CBUIC .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.