IDEAS home Printed from https://ideas.repec.org/a/aac/ijirss/v6y2023i3p545-552id1580.html
   My bibliography  Save this article

A fast and effective approach for classification medical data sets

Author

Listed:
  • Ivan Ivanov
  • Borislava Toleva
  • Vincent James Hooper

Abstract

This study's objective is to offer a practical computer method for handling classification problems on large datasets. The aim of this study is to offer a practical computer approach for handling classification tasks on big datasets. We show that using Python’s built-in parameters to balance classes can improve the accuracy and the metrics of a classification task. We employ logistic regression, support vector machines, decision trees, and random forest classifier. We use the parameter “class_weight='balanced'” to run each classification model as well as stratified train/test splitting to ensure that relative class frequencies are approximately preserved in each train and set subsets. We use our methods on medical datasets because class imbalance is frequently a problem there. Our research shows that the proposed algorithms can improve the accuracy and classification metrics of the given medical datasets. We propose an effective and easy-to-apply alternative to improve the prediction ability of the presented classification models in medical datasets. We test an easily reproducible set-up where any classification model can be used to model imbalanced classes. The key tuning of the model lies in the stratified train/test split as well as the parameter “class weight='balanced'”. By combination of parameter tuning, better classification performance can be obtained in a quick and simple manner. It is simple and quick to replicate our algorithms to examine various medical datasets and determine which model best fits the data. It can be reproduced in biostatistical laboratories and by medical companies. Because it is simple to comprehend, medical researchers can swiftly review the information and determine the best course of action.

Suggested Citation

  • Ivan Ivanov & Borislava Toleva & Vincent James Hooper, 2023. "A fast and effective approach for classification medical data sets," International Journal of Innovative Research and Scientific Studies, Innovative Research Publishing, vol. 6(3), pages 545-552.
  • Handle: RePEc:aac:ijirss:v:6:y:2023:i:3:p:545-552:id:1580
    as

    Download full text from publisher

    File URL: https://ijirss.com/index.php/ijirss/article/view/1580/364
    Download Restriction: no
    ---><---

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:aac:ijirss:v:6:y:2023:i:3:p:545-552:id:1580. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Natalie Jean (email available below). General contact details of provider: https://ijirss.com/index.php/ijirss/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.