IDEAS home Printed from https://ideas.repec.org/p/ipp/wpaper/1018.html
   My bibliography  Save this paper

Optimal carbon sequestration path when different biological or physical sequestration

Author

Listed:
  • Alejandro Caparrós
  • David Zilberman

Abstract

We set out a general framework to discuss carbon sequestration programs when different alternatives are available and each of them yields sequestration benefits far into the future and at varying rates. We focus on reforestations, since trees grow for a long time, at varying rates, and different types of species yield completely different sequestration rates. We show that the Social Planner (and the landowner) will continuously change the species used for the reforestations and that the trend is to use slower and slower growing species as the land available for reforestations becomes scarcer and carbon builds up in the atmosphere.

Suggested Citation

  • Alejandro Caparrós & David Zilberman, 2010. "Optimal carbon sequestration path when different biological or physical sequestration," Working Papers 1018, Instituto de Políticas y Bienes Públicos (IPP), CSIC.
  • Handle: RePEc:ipp:wpaper:1018
    as

    Download full text from publisher

    File URL: http://investigacion.cchs.csic.es/RePEc/ipp/wpaper/18_Caparros_Zilberman.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Feng, Hongli & Zhao, Jinhua & Kling, Catherine L., 2002. "Time Path and Implementation of Carbon Sequestration (The)," Staff General Research Papers Archive 5068, Iowa State University, Department of Economics.
    2. Paulo A.L.D. Nunes & Jeroen C.J.M. van den Bergh, 2003. "The Ecological Economics of Biodiversity," Books, Edward Elgar Publishing, number 2993.
    3. G. Cornelis Kooten, 2000. "Economic Dynamics of Tree Planting for Carbon Uptake on Marginal Agricultural Lands," Canadian Journal of Agricultural Economics/Revue canadienne d'agroeconomie, Canadian Agricultural Economics Society/Societe canadienne d'agroeconomie, vol. 48(1), pages 51-65, March.
    4. Lubowski, Ruben N. & Plantinga, Andrew J. & Stavins, Robert N., 2006. "Land-use change and carbon sinks: Econometric estimation of the carbon sequestration supply function," Journal of Environmental Economics and Management, Elsevier, vol. 51(2), pages 135-152, March.
    5. Tavoni, Massimo & Sohngen, Brent & Bosetti, Valentina, 2007. "Forestry and the carbon market response to stabilize climate," Energy Policy, Elsevier, vol. 35(11), pages 5346-5353, November.
    6. Olschewski, Roland & Benitez, Pablo C., 2005. "Secondary forests as temporary carbon sinks? The economic impact of accounting methods on reforestation projects in the tropics," Ecological Economics, Elsevier, vol. 55(3), pages 380-394, November.
    7. Ragot, Lionel & Schubert, Katheline, 2008. "The optimal carbon sequestration in agricultural soils: Do the dynamics of the physical process matter?," Journal of Economic Dynamics and Control, Elsevier, vol. 32(12), pages 3847-3865, December.
    8. Salo, Seppo & Tahvonen, Olli, 2002. "On Equilibrium Cycles and Normal Forests in Optimal Harvesting of Tree Vintages," Journal of Environmental Economics and Management, Elsevier, vol. 44(1), pages 1-22, July.
    9. M. I. Kamien & E. Muller, 1976. "Optimal Control with Integral State Equations," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 43(3), pages 469-473.
    10. van 't Veld, Klaas & Plantinga, Andrew, 2005. "Carbon sequestration or abatement? The effect of rising carbon prices on the optimal portfolio of greenhouse-gas mitigation strategies," Journal of Environmental Economics and Management, Elsevier, vol. 50(1), pages 59-81, July.
    11. Clara Costa Duarte & Maria A. Cunha-e-Sa, 2006. "Forest vintages and carbon sequestration," Nova SBE Working Paper Series wp482, Universidade Nova de Lisboa, Nova School of Business and Economics.
    12. Brent Sohngen & Robert Mendelsohn, 2003. "An Optimal Control Model of Forest Carbon Sequestration," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 85(2), pages 448-457.
    13. G. Cornelis van Kooten & Clark S. Binkley & Gregg Delcourt, 1995. "Effect of Carbon Taxes and Subsidies on Optimal Forest Rotation Age and Supply of Carbon Services," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 77(2), pages 365-374.
    14. Schmalensee, Richard, 1979. "Market Structure, Durability, and Quality: A Selective Survey," Economic Inquiry, Western Economic Association International, vol. 17(2), pages 177-196, April.
    15. Caparros, Alejandro & Jacquemont, Frederic, 2003. "Conflicts between biodiversity and carbon sequestration programs: economic and legal implications," Ecological Economics, Elsevier, vol. 46(1), pages 143-157, August.
    16. Muller, Eitan & Peles, Yoram C., 1990. "Optimal dynamic durability," Journal of Economic Dynamics and Control, Elsevier, vol. 14(3-4), pages 709-719, October.
    17. Robert N. Stavins, 1999. "The Costs of Carbon Sequestration: A Revealed-Preference Approach," American Economic Review, American Economic Association, vol. 89(4), pages 994-1009, September.
    18. Xabadia, Angels & Goetz, Renan U. & Zilberman, David, 2006. "Control of accumulating stock pollution by heterogeneous producers," Journal of Economic Dynamics and Control, Elsevier, vol. 30(7), pages 1105-1130, July.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Caparros, Alejandro & Cerda, Emilio & Ovando, P. & Campos, Pablo, 2007. "Carbon Sequestration with Reforestations and Biodiversity-Scenic Values," Climate Change Modelling and Policy Working Papers 9323, Fondazione Eni Enrico Mattei (FEEM).
    2. Susaeta, Andres & Chang, Sun Joseph & Carter, Douglas R. & Lal, Pankaj, 2014. "Economics of carbon sequestration under fluctuating economic environment, forest management and technological changes: An application to forest stands in the southern United States," Journal of Forest Economics, Elsevier, vol. 20(1), pages 47-64.
    3. van Kooten, G. Cornelis & Sohngen, Brent, 2007. "Economics of Forest Ecosystem Carbon Sinks: A Review," International Review of Environmental and Resource Economics, now publishers, vol. 1(3), pages 237-269, September.
    4. Renato Rosa & Clara Costa Duarte & Maria A. Cunha-e-Sá, 2009. "The Role of Forests as Carbon Sinks: Land-Use and Carbon Accounting," Working Papers 2009.61, Fondazione Eni Enrico Mattei.
    5. Favero, Alice & Mendelsohn, Robert & Sohngen, Brent, 2016. "Carbon Storage and Bioenergy: Using Forests for Climate Mitigation," MITP: Mitigation, Innovation and Transformation Pathways 232215, Fondazione Eni Enrico Mattei (FEEM).
    6. Ovando, Paola & Caparrós, Alejandro, 2009. "Land use and carbon mitigation in Europe: A survey of the potentials of different alternatives," Energy Policy, Elsevier, vol. 37(3), pages 992-1003, March.
    7. Edwin Van Der Werf & Sonja Peterson, 2009. "Modeling linkages between climate policy and land use: an overview," Agricultural Economics, International Association of Agricultural Economists, vol. 40(5), pages 507-517, September.
    8. Gren, Ing-Marie & Zeleke, Abenezer Aklilu, 2016. "Policy design for forest carbon sequestration: A review of the literature," Forest Policy and Economics, Elsevier, vol. 70(C), pages 128-136.
    9. Sharma, Bijay P. & Khanna, Madhu & Miao, Ruiqing, 2022. "Designing Efficient Payments to Incentivize GHG Mitigation Using Energy Crops," 2022 Annual Meeting, July 31-August 2, Anaheim, California 322361, Agricultural and Applied Economics Association.
    10. Latta, Gregory S. & Adams, Darius M. & Bell, Kathleen P. & Kline, Jeffrey D., 2016. "Evaluating land-use and private forest management responses to a potential forest carbon offset sales program in western Oregon (USA)," Forest Policy and Economics, Elsevier, vol. 65(C), pages 1-8.
    11. Barua, Sepul K. & Lintunen, Jussi & Uusivuori, Jussi & Kuuluvainen, Jari, 2014. "On the economics of tropical deforestation: Carbon credit markets and national policies," Forest Policy and Economics, Elsevier, vol. 47(C), pages 36-45.
    12. Lintunen, Jussi & Uusivuori, Jussi, 2014. "On The Economics of Forest Carbon: Renewable and Carbon Neutral But Not Emission Free," Climate Change and Sustainable Development 165755, Fondazione Eni Enrico Mattei (FEEM).
    13. Michetti, Melania & Rosa, Renato, 2012. "Afforestation and timber management compliance strategies in climate policy. A computable general equilibrium analysis," Ecological Economics, Elsevier, vol. 77(C), pages 139-148.
    14. Im, Eun Ho & Adams, Darius M. & Latta, Gregory S., 2007. "Potential impacts of carbon taxes on carbon flux in western Oregon private forests," Forest Policy and Economics, Elsevier, vol. 9(8), pages 1006-1017, May.
    15. Dumortier, Jerome Robert Florian, 2011. "The impact of forest offset credits under a stochastic carbon price on agriculture using a rational expectations and real options framework," ISU General Staff Papers 201101010800001160, Iowa State University, Department of Economics.
    16. Renan Ulrich Goetz & Natali Hritonenko & Ruben Mur & Àngels Xabadia & Yuri Yatsenko, 2008. "Climate Change and the Cost of Carbon Sequestration: The Case of Forest Management," Working Papers 329, Barcelona School of Economics.
    17. Alice Favero & Robert Mendelsohn & Brent Sohngen, 2017. "Using forests for climate mitigation: sequester carbon or produce woody biomass?," Climatic Change, Springer, vol. 144(2), pages 195-206, September.
    18. van 't Veld, Klaas & Plantinga, Andrew, 2005. "Carbon sequestration or abatement? The effect of rising carbon prices on the optimal portfolio of greenhouse-gas mitigation strategies," Journal of Environmental Economics and Management, Elsevier, vol. 50(1), pages 59-81, July.
    19. Clara Costa Duarte & Maria A. Cunha-e-Sa, 2006. "Forest vintages and carbon sequestration," Nova SBE Working Paper Series wp482, Universidade Nova de Lisboa, Nova School of Business and Economics.
    20. Alejandro Caparrós & Emilio Cerdá & Paola Ovando & Pablo Campos, 2010. "Carbon Sequestration with Reforestations and Biodiversity-scenic Values," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 45(1), pages 49-72, January.

    More about this item

    Keywords

    carbon sequestration; forests; optimal control; vintage; Volterra integral.;
    All these keywords.

    JEL classification:

    • C61 - Mathematical and Quantitative Methods - - Mathematical Methods; Programming Models; Mathematical and Simulation Modeling - - - Optimization Techniques; Programming Models; Dynamic Analysis
    • Q23 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Renewable Resources and Conservation - - - Forestry
    • Q54 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Environmental Economics - - - Climate; Natural Disasters and their Management; Global Warming

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ipp:wpaper:1018. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Adelheid Holl (email available below). General contact details of provider: https://edirc.repec.org/data/ippcses.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.