IDEAS home Printed from https://ideas.repec.org/a/eee/ecolec/v77y2012icp139-148.html
   My bibliography  Save this article

Afforestation and timber management compliance strategies in climate policy. A computable general equilibrium analysis

Author

Listed:
  • Michetti, Melania
  • Rosa, Renato

Abstract

This paper analyzes the role of forest-based carbon sequestration in a unilateral EU27 emissions reduction policy under a Global Computable General Equilibrium (CGE) framework. Forestry mitigation is introduced into the model relying on carbon sequestration curves provided by a global forestry model. The structure of the original CGE is extended to consider land use change and timber supply effects, resulting from the use of forest sinks to reduce carbon emissions. Results show that afforestation and timber management could lead to substantially lower policy costs. By using forest-carbon sinks it is possible to achieve the 30% emissions reduction target with an additional European effort of only 0.2% of GDP compared with the cost of a 20% emissions reduction without forestry. Carbon price is also reduced, by approximately 30% in 2020. European forest-carbon sequestration may have, however, the perverse effect of increasing timber production in areas of the world which already have high deforestation rates. A sensitivity analysis on main parameters confirms the robustness of our results.

Suggested Citation

  • Michetti, Melania & Rosa, Renato, 2012. "Afforestation and timber management compliance strategies in climate policy. A computable general equilibrium analysis," Ecological Economics, Elsevier, vol. 77(C), pages 139-148.
  • Handle: RePEc:eee:ecolec:v:77:y:2012:i:c:p:139-148
    DOI: 10.1016/j.ecolecon.2012.02.020
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0921800912000845
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ecolecon.2012.02.020?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Di Maria, C. & van der Werf, E.H., 2005. "Carbon Leakage Revisited : Unilateral Climate Policy with Directed Technical Change," Discussion Paper 2005-68, Tilburg University, Center for Economic Research.
    2. van Kooten, G. Cornelis & Sohngen, Brent, 2007. "Economics of Forest Ecosystem Carbon Sinks: A Review," International Review of Environmental and Resource Economics, now publishers, vol. 1(3), pages 237-269, September.
    3. Valentina Bosetti & Carlo Carraro & Marzio Galeotti & Emanuele Massetti & Massimo Tavoni, 2006. "WITCH. A World Induced Technical Change Hybrid Model," Working Papers 2006_46, Department of Economics, University of Venice "Ca' Foscari".
    4. Peter J. Parks & Ian W. Hardie, 1995. "Least-Cost Forest Carbon Reserves: Cost-Effective Subsidies to Convert Marginal Agricultural Land to Forests," Land Economics, University of Wisconsin Press, vol. 71(1), pages 122-136.
    5. Lubowski, Ruben N. & Plantinga, Andrew J. & Stavins, Robert N., 2006. "Land-use change and carbon sinks: Econometric estimation of the carbon sequestration supply function," Journal of Environmental Economics and Management, Elsevier, vol. 51(2), pages 135-152, March.
    6. Bosello, Francesco & Roson, Roberto, 2006. "Climate Change, Energy Demand and Market Power in a General Equilibrium Model of the World Economy," Conference papers 331448, Purdue University, Center for Global Trade Analysis, Global Trade Analysis Project.
    7. Tavoni, Massimo & Sohngen, Brent & Bosetti, Valentina, 2007. "Forestry and the carbon market response to stabilize climate," Energy Policy, Elsevier, vol. 35(11), pages 5346-5353, November.
    8. Ovando, Paola & Caparrós, Alejandro, 2009. "Land use and carbon mitigation in Europe: A survey of the potentials of different alternatives," Energy Policy, Elsevier, vol. 37(3), pages 992-1003, March.
    9. Peterson, Everett B. & Schleich, Joachim, 2007. "Economic and environmental effects of border tax adjustments," Working Papers "Sustainability and Innovation" S1/2007, Fraunhofer Institute for Systems and Innovation Research (ISI).
    10. Mustafa H. Babiker & Thomas F. Rutherford, 2005. "The Economic Effects of Border Measures in Subglobal Climate Agreements," The Energy Journal, International Association for Energy Economics, vol. 0(Number 4), pages 99-126.
    11. Boehringer Christoph & Fischer Carolyn & Rosendahl Knut Einar, 2010. "The Global Effects of Subglobal Climate Policies," The B.E. Journal of Economic Analysis & Policy, De Gruyter, vol. 10(2), pages 1-35, December.
    12. Eboli, Fabio & Parrado, Ramiro & Roson, Roberto, 2010. "Climate-change feedback on economic growth: explorations with a dynamic general equilibrium model," Environment and Development Economics, Cambridge University Press, vol. 15(5), pages 515-533, October.
    13. Newell, Richard G. & Stavins, Robert N., 2000. "Climate Change and Forest Sinks: Factors Affecting the Costs of Carbon Sequestration," Journal of Environmental Economics and Management, Elsevier, vol. 40(3), pages 211-235, November.
    14. Valentina Bosetti, Carlo Carraro, Marzio Galeotti, Emanuele Massetti, Massimo Tavoni, 2006. "A World induced Technical Change Hybrid Model," The Energy Journal, International Association for Energy Economics, vol. 0(Special I), pages 13-38.
    15. William D. Nordhaus, 1991. "The Cost of Slowing Climate Change: a Survey," The Energy Journal, International Association for Energy Economics, vol. 0(Number 1), pages 37-66.
    16. Reyer Gerlagh & Onno Kuik, 2007. "Carbon Leakage with International Technology Spillovers," Working Papers 2007.33, Fondazione Eni Enrico Mattei.
    17. Ralph Alig & Darius Adams & Bruce McCarl & J. Callaway & Steven Winnett, 1997. "Assessing effects of mitigation strategies for global climate change with an intertemporal model of the U.S. forest and agriculture sectors," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 9(3), pages 259-274, April.
    18. Brent Sohngen & Robert Mendelsohn, 2003. "An Optimal Control Model of Forest Carbon Sequestration," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 85(2), pages 448-457.
    19. Corrado Maria & Edwin Werf, 2008. "Carbon leakage revisited: unilateral climate policy with directed technical change," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 39(2), pages 55-74, February.
    20. Brent Sohngen and Roger Sedjo, 2006. "Carbon Sequestration in Global Forests Under Different Carbon Price Regimes," The Energy Journal, International Association for Energy Economics, vol. 0(Special I), pages 109-126.
    21. Jean-Marc Burniaux & Joaquim Oliveira Martins, 2000. "Carbon Emission Leakages: A General Equilibrium View," OECD Economics Department Working Papers 242, OECD Publishing.
    22. Burniaux, Jean-Marc & Truong Truong, 2002. "GTAP-E: An Energy-Environmental Version of the GTAP Model," GTAP Technical Papers 923, Center for Global Trade Analysis, Department of Agricultural Economics, Purdue University.
    23. Babiker, Mustafa H., 2005. "Climate change policy, market structure, and carbon leakage," Journal of International Economics, Elsevier, vol. 65(2), pages 421-445, March.
    24. Burniaux, Jean-March & Truong, Truong P., 2002. "Gtap-E: An Energy-Environmental Version Of The Gtap Model," Technical Papers 28705, Purdue University, Center for Global Trade Analysis, Global Trade Analysis Project.
    25. Robert N. Stavins, 1999. "The Costs of Carbon Sequestration: A Revealed-Preference Approach," American Economic Review, American Economic Association, vol. 89(4), pages 994-1009, September.
    26. Hertel, Thomas, 1997. "Global Trade Analysis: Modeling and applications," GTAP Books, Center for Global Trade Analysis, Department of Agricultural Economics, Purdue University, number 7685, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Mohammad Zahangeer Alam & Md Manjurul Haque & Mimi Talukdar & Md Moniruzzaman & Joan Halsey & Alex R Crump & Md Abdul Qayum & Hasan Mohammad Abdullah Author-Workplace-Name: Department of Agroforestry , 2018. "Effect of Natural Disasters and their Coping Strategies in the Kuakata Coastal Belt of Patuakhali Bangladesh," International Journal of Environmental Sciences & Natural Resources, Juniper Publishers Inc., vol. 14(4), pages 105-119, September.
    2. Cho, Seong-Hoon & Lee, Juhee & Roberts, Roland & Yu, Edward T. & Armsworth, Paul R., 2018. "Impact of market conditions on the effectiveness of payments for forest-based carbon sequestration," Forest Policy and Economics, Elsevier, vol. 92(C), pages 33-42.
    3. Marc Vielle, 2020. "Navigating various flexibility mechanisms under European burden-sharing," Environmental Economics and Policy Studies, Springer;Society for Environmental Economics and Policy Studies - SEEPS, vol. 22(2), pages 267-313, April.
    4. Hongge Zhu & Yingli Cai & Hong Lin & Yuchen Tian, 2022. "Impacts of Cross-Sectoral Climate Policy on Forest Carbon Sinks and Their Spatial Spillover: Evidence from Chinese Provincial Panel Data," IJERPH, MDPI, vol. 19(21), pages 1-21, November.
    5. Ochuodho, T.O. & Lantz, V.A. & Lloyd-Smith, P. & Benitez, P., 2012. "Regional economic impacts of climate change and adaptation in Canadian forests: A CGE modeling analysis," Forest Policy and Economics, Elsevier, vol. 25(C), pages 100-112.
    6. Monge, Juan J. & Bryant, Henry L. & Gan, Jianbang & Richardson, James W., 2016. "Land use and general equilibrium implications of a forest-based carbon sequestration policy in the United States," Ecological Economics, Elsevier, vol. 127(C), pages 102-120.
    7. Carol McAusland & Nouri Najjar, 2015. "Carbon Footprint Taxes," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 61(1), pages 37-70, May.
    8. Malahayati, Marissa & Masui, Toshihiko, 2019. "The impact of green house gas mitigation policy for land use and the forestry sector in Indonesia: Applying the computable general equilibrium model," Forest Policy and Economics, Elsevier, vol. 109(C).
    9. Gren, Ing-Marie & Zeleke, Abenezer Aklilu, 2016. "Policy design for forest carbon sequestration: A review of the literature," Forest Policy and Economics, Elsevier, vol. 70(C), pages 128-136.
    10. Weng, Yuwei & Cai, Wenjia & Wang, Can, 2021. "Evaluating the use of BECCS and afforestation under China’s carbon-neutral target for 2060," Applied Energy, Elsevier, vol. 299(C).
    11. Xinyue Yang & Ye Song & Mingjun Sun & Hongjun Peng, 2020. "Strategies for Capital Constrained Timber and Carbon Sink Supply Chain under the Cap-and-Trade Scheme," Sustainability, MDPI, vol. 12(11), pages 1-15, May.
    12. García, Jorge H. & Orlov, Anton & Aaheim, Asbjørn, 2018. "Negative leakage: The key role of forest management regimes," Journal of Forest Economics, Elsevier, vol. 33(C), pages 8-13.
    13. Gren, Ing-Marie & Carlsson, Mattias, 2013. "Economic value of carbon sequestration in forests under multiple sources of uncertainty," Journal of Forest Economics, Elsevier, vol. 19(2), pages 174-189.
    14. Melania Michetti & Matteo Zampieri, 2014. "Climate–Human–Land Interactions: A Review of Major Modelling Approaches," Land, MDPI, vol. 3(3), pages 1-41, July.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Philippidis, G. & Resano, H. & Sanjuan, A.I. & Bourne, M. & Kitou, E., 2012. "Shifting Armington Trade Preferences: A re-examination of the Mercosur-EU negotiations," Conference papers 332171, Purdue University, Center for Global Trade Analysis, Global Trade Analysis Project.
    2. Michetti, Melania & Parrado, Ramiro, 2012. "Improving Land-use modelling within CGE to assess Forest-based Mitigation Potential and Costs," Climate Change and Sustainable Development 122862, Fondazione Eni Enrico Mattei (FEEM).
    3. Monge, Juan J. & Bryant, Henry L. & Gan, Jianbang & Richardson, James W., 2016. "Land use and general equilibrium implications of a forest-based carbon sequestration policy in the United States," Ecological Economics, Elsevier, vol. 127(C), pages 102-120.
    4. Valentina Bosetti & Enrica De Cian, 2013. "A Good Opening: The Key to Make the Most of Unilateral Climate Action," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 56(2), pages 255-276, October.
    5. Ovando, Paola & Caparrós, Alejandro, 2009. "Land use and carbon mitigation in Europe: A survey of the potentials of different alternatives," Energy Policy, Elsevier, vol. 37(3), pages 992-1003, March.
    6. Iain Fraser & Robert Waschik, 2010. "The Double Dividend Hypothesis in a CGE Model: Specific Factors and Variable Labour Supply," Working Papers 2010.02, School of Economics, La Trobe University.
    7. Antimiani, Alessandro & Costantini, Valeria & Martini, Chiara & Salvatici, Luca & Tommasino, Maria Cristina, 2013. "Assessing alternative solutions to carbon leakage," Energy Economics, Elsevier, vol. 36(C), pages 299-311.
    8. Favero, Alice & Mendelsohn, Robert & Sohngen, Brent, 2016. "Carbon Storage and Bioenergy: Using Forests for Climate Mitigation," MITP: Mitigation, Innovation and Transformation Pathways 232215, Fondazione Eni Enrico Mattei (FEEM).
    9. Edwin Van Der Werf & Sonja Peterson, 2009. "Modeling linkages between climate policy and land use: an overview," Agricultural Economics, International Association of Agricultural Economists, vol. 40(5), pages 507-517, September.
    10. Ying Tung Chan, 2019. "Optimal Environmental Tax Rate in an Open Economy with Labor Migration—An E-DSGE Model Approach," Sustainability, MDPI, vol. 11(19), pages 1-38, September.
    11. Arroyo-Currás, Tabaré & Bauer, Nico & Kriegler, Elmar & Schwanitz, Valeria Jana & Luderer, Gunnar & Aboumahboub, Tino & Giannousakis, Anastasis & Hilaire, Jérôme, 2015. "Carbon leakage in a fragmented climate regime: The dynamic response of global energy markets," Technological Forecasting and Social Change, Elsevier, vol. 90(PA), pages 192-203.
    12. Alexeeva-Talebi, Victoria & Böhringer, Christoph & Löschel, Andreas & Voigt, Sebastian, 2012. "The value-added of sectoral disaggregation: Implications on competitive consequences of climate change policies," Energy Economics, Elsevier, vol. 34(S2), pages 127-142.
    13. Renato Rosa & Clara Costa Duarte & Maria A. Cunha-e-Sá, 2009. "The Role of Forests as Carbon Sinks: Land-Use and Carbon Accounting," Working Papers 2009.61, Fondazione Eni Enrico Mattei.
    14. Reyer Gerlagh & Onno Kuik, 2007. "Carbon Leakage with International Technology Spillovers," Working Papers 2007.33, Fondazione Eni Enrico Mattei.
    15. Christian Beermann, 2015. "Climate Policy and the Intertemporal Supply of Fossil Resources," ifo Beiträge zur Wirtschaftsforschung, ifo Institute - Leibniz Institute for Economic Research at the University of Munich, number 62.
    16. Jung, Martina, 2003. "The Role of Forestry Sinks in the CDM - Analysing the Effects of Policy Decisions on the Carbon Market," Discussion Paper Series 26293, Hamburg Institute of International Economics.
    17. Antimiani, Alessandro & Costantini, Valeria & Martini, Chiara & Salvatici, Luca & Tommasino, Maria Cristina, 2011. "Cooperative and non-cooperative solutions to carbon leakage," Conference papers 332096, Purdue University, Center for Global Trade Analysis, Global Trade Analysis Project.
    18. Gerlagh, Reyer & Kuik, Onno, 2014. "Spill or leak? Carbon leakage with international technology spillovers: A CGE analysis," Energy Economics, Elsevier, vol. 45(C), pages 381-388.
    19. Melania Michetti & Matteo Zampieri, 2014. "Climate–Human–Land Interactions: A Review of Major Modelling Approaches," Land, MDPI, vol. 3(3), pages 1-41, July.
    20. van Kooten, G. Cornelis & Laaksonen-Craig, Susanna & Wang, Yichuan, 2007. "Costs of Creating Carbon Offset Credits via Forestry Activities: A Meta-Regression Analysis," Working Papers 37039, University of Victoria, Resource Economics and Policy.

    More about this item

    Keywords

    Climate change; General equilibrium modeling; Forestry; Afforestation;
    All these keywords.

    JEL classification:

    • D58 - Microeconomics - - General Equilibrium and Disequilibrium - - - Computable and Other Applied General Equilibrium Models
    • Q23 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Renewable Resources and Conservation - - - Forestry
    • Q24 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Renewable Resources and Conservation - - - Land
    • Q52 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Environmental Economics - - - Pollution Control Adoption and Costs; Distributional Effects; Employment Effects
    • Q54 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Environmental Economics - - - Climate; Natural Disasters and their Management; Global Warming

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ecolec:v:77:y:2012:i:c:p:139-148. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/ecolecon .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.