IDEAS home Printed from https://ideas.repec.org/p/fth/gremaq/96.433.html
   My bibliography  Save this paper

Aggregations and Marginalization of Garch and Stochastic Volatility Models

Author

Listed:
  • Meddahi, N
  • Renault, E.

Abstract

The GARCH and Stochastic Volatility paradigms are often brought into conflict as two competitive views of the appropriate conditional variance concept: conditional variance given past values of the same series or conditional variance given a larger past information (including possibly unobservable state variables). The main thesis of this paper is that, since in general the econometrician has no idea about something like a structural level of disaggregation, a well-written volatility model should be specified in such a way that one is always allowed to reduce the information set witout invalidating the model.

Suggested Citation

  • Meddahi, N & Renault, E., 1996. "Aggregations and Marginalization of Garch and Stochastic Volatility Models," Papers 96.433, Toulouse - GREMAQ.
  • Handle: RePEc:fth:gremaq:96.433
    as

    Download full text from publisher

    To our knowledge, this item is not available for download. To find whether it is available, there are three options:
    1. Check below whether another version of this item is available online.
    2. Check on the provider's web page whether it is in fact available.
    3. Perform a search for a similarly titled item that would be available.

    Other versions of this item:

    References listed on IDEAS

    as
    1. Bollerslev, Tim & Engle, Robert F. & Nelson, Daniel B., 1986. "Arch models," Handbook of Econometrics, in: R. F. Engle & D. McFadden (ed.), Handbook of Econometrics, edition 1, volume 4, chapter 49, pages 2959-3038, Elsevier.
    2. Cox, John C. & Ross, Stephen A., 1976. "The valuation of options for alternative stochastic processes," Journal of Financial Economics, Elsevier, vol. 3(1-2), pages 145-166.
    3. Hansen, Lars Peter & Singleton, Kenneth J, 1996. "Efficient Estimation of Linear Asset-Pricing Models with Moving Average Errors," Journal of Business & Economic Statistics, American Statistical Association, vol. 14(1), pages 53-68, January.
    4. Glosten, Lawrence R & Jagannathan, Ravi & Runkle, David E, 1993. "On the Relation between the Expected Value and the Volatility of the Nominal Excess Return on Stocks," Journal of Finance, American Finance Association, vol. 48(5), pages 1779-1801, December.
    5. Bollerslev, Tim, 1986. "Generalized autoregressive conditional heteroskedasticity," Journal of Econometrics, Elsevier, vol. 31(3), pages 307-327, April.
    6. Engle, Robert F. (ed.), 1995. "ARCH: Selected Readings," OUP Catalogue, Oxford University Press, number 9780198774327.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Georgiana-Denisa Banulescu & Bertrand Candelon & Christophe Hurlin & Sébastien Laurent, 2014. "Do We Need Ultra-High Frequency Data to Forecast Variances?," Working Papers halshs-01078158, HAL.
    2. Nour Meddahi, 2002. "A theoretical comparison between integrated and realized volatility," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 17(5), pages 479-508.
    3. Ole E. Barndorff-Nielsen & Neil Shephard, 2001. "Econometric Analysis of Realised Covariation: High Frequency Covariance, Regression and Correlation in Financial Economics," Economics Papers 2002-W13, Economics Group, Nuffield College, University of Oxford, revised 18 Mar 2002.
    4. Andreou, Elena & Ghysels, Eric, 2002. "Rolling-Sample Volatility Estimators: Some New Theoretical, Simulation, and Empirical Results," Journal of Business & Economic Statistics, American Statistical Association, vol. 20(3), pages 363-376, July.
    5. MEDDAHI, Nour & RENAULT, Éric, 1998. "Quadratic M-Estimators for ARCH-Type Processes," Cahiers de recherche 9814, Universite de Montreal, Departement de sciences economiques.
    6. Meddahi, N., 2001. "An Eigenfunction Approach for Volatility Modeling," Cahiers de recherche 2001-29, Centre interuniversitaire de recherche en économie quantitative, CIREQ.
    7. Blake, David & Cairns, Andrew & Dowd, Kevin, 2008. "Turning pension plans into pension planes: What investment strategy designers of defined contribution pension plans can learn from commercial aircraft designers," MPRA Paper 33749, University Library of Munich, Germany.
    8. Denisa Banulescu-Radu & Christophe Hurlin & Bertrand Candelon & Sébastien Laurent, 2016. "Do We Need High Frequency Data to Forecast Variances?," Annals of Economics and Statistics, GENES, issue 123-124, pages 135-174.
    9. Corradi, Valentina, 2000. "Reconsidering the continuous time limit of the GARCH(1, 1) process," Journal of Econometrics, Elsevier, vol. 96(1), pages 145-153, May.
    10. Zaffaroni, Paolo, 2007. "Aggregation and memory of models of changing volatility," Journal of Econometrics, Elsevier, vol. 136(1), pages 237-249, January.
    11. Meddahi, Nour & Renault, Eric, 2004. "Temporal aggregation of volatility models," Journal of Econometrics, Elsevier, vol. 119(2), pages 355-379, April.
    12. John W. Galbraith & Victoria Zinde-Walsh, 2000. "Properties of Estimates of Daily GARCH Parameters Based on Intra-Day Observations," Econometric Society World Congress 2000 Contributed Papers 1800, Econometric Society.
    13. Griffin, J.E. & Steel, M.F.J., 2006. "Inference with non-Gaussian Ornstein-Uhlenbeck processes for stochastic volatility," Journal of Econometrics, Elsevier, vol. 134(2), pages 605-644, October.
    14. Sébastien Laurent & Luc Bauwens & Jeroen V. K. Rombouts, 2006. "Multivariate GARCH models: a survey," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 21(1), pages 79-109.
    15. Hafner, Christian M., 2008. "Temporal aggregation of multivariate GARCH processes," Journal of Econometrics, Elsevier, vol. 142(1), pages 467-483, January.
    16. Tina Hviid Rydberg & Neil Shephard, 2000. "BIN Models for Trade-by-Trade Data. Modelling the Number of Trades in a Fixed Interval of Time," Econometric Society World Congress 2000 Contributed Papers 0740, Econometric Society.
    17. Anders Eriksson & Daniel P. A. Preve & Jun Yu, 2019. "Forecasting Realized Volatility Using a Nonnegative Semiparametric Model," JRFM, MDPI, vol. 12(3), pages 1-23, August.
    18. Ali Alami & Eric Renault, 2001. "Risque de modèle de volatilité," CIRANO Working Papers 2001s-06, CIRANO.
    19. Elena Andreou & Eric Ghysels, 2002. "Tests for Breaks in the Conditional Co-movements of Asset Returns," CIRANO Working Papers 2002s-59, CIRANO.
    20. Torben G. Andersen & Tim Bollerslev, 1996. "DM-Dollar Volatility: Intraday Activity Patterns, Macroeconomic Announcements, and Longer Run Dependencies," NBER Working Papers 5783, National Bureau of Economic Research, Inc.
    21. René Garcia & Eric Renault, 1999. "Latent Variable Models for Stochastic Discount Factors," CIRANO Working Papers 99s-47, CIRANO.
    22. Kim Christensen & Mark Podolskij & Mathias Vetter, 2009. "Bias-correcting the realized range-based variance in the presence of market microstructure noise," Finance and Stochastics, Springer, vol. 13(2), pages 239-268, April.
    23. Christensen, Kim & Podolski, Mark, 2005. "Asymptotic theory for range-based estimation of integrated variance of a continuous semi-martingale," Technical Reports 2005,18, Technische Universität Dortmund, Sonderforschungsbereich 475: Komplexitätsreduktion in multivariaten Datenstrukturen.
    24. Matei, Marius, 2011. "Non-Linear Volatility Modeling of Economic and Financial Time Series Using High Frequency Data," Journal for Economic Forecasting, Institute for Economic Forecasting, vol. 0(2), pages 116-141, June.
    25. Giacomo Sbrana, 2012. "Aggregation and marginalization of GARCH processes: some further results," METRON, Springer;Sapienza Università di Roma, vol. 70(2), pages 165-172, August.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Siem Jan Koopman & Eugenie Hol Uspensky, 2002. "The stochastic volatility in mean model: empirical evidence from international stock markets," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 17(6), pages 667-689.
    2. Issler, João Victor, 1999. "Estimating and forecasting the volatility of Brazilian finance series using arch models (Preliminary Version)," FGV EPGE Economics Working Papers (Ensaios Economicos da EPGE) 347, EPGE Brazilian School of Economics and Finance - FGV EPGE (Brazil).
    3. Meddahi, Nour & Renault, Eric, 2004. "Temporal aggregation of volatility models," Journal of Econometrics, Elsevier, vol. 119(2), pages 355-379, April.
    4. Tim Bollerslev, 2008. "Glossary to ARCH (GARCH)," CREATES Research Papers 2008-49, Department of Economics and Business Economics, Aarhus University.
    5. Ataurima Arellano, Miguel & Rodríguez, Gabriel, 2020. "Empirical modeling of high-income and emerging stock and Forex market return volatility using Markov-switching GARCH models," The North American Journal of Economics and Finance, Elsevier, vol. 52(C).
    6. Chalamandaris, Georgios & Rompolis, Leonidas S., 2012. "Exploring the role of the realized return distribution in the formation of the implied volatility smile," Journal of Banking & Finance, Elsevier, vol. 36(4), pages 1028-1044.
    7. Li, Qi & Yang, Jian & Hsiao, Cheng & Chang, Young-Jae, 2005. "The relationship between stock returns and volatility in international stock markets," Journal of Empirical Finance, Elsevier, vol. 12(5), pages 650-665, December.
    8. Willy Alanya & Gabriel Rodríguez, 2019. "Asymmetries in Volatility: An Empirical Study for the Peruvian Stock and Forex Markets," Review of Pacific Basin Financial Markets and Policies (RPBFMP), World Scientific Publishing Co. Pte. Ltd., vol. 22(01), pages 1-18, March.
    9. Peter Christoffersen & Redouane Elkamhi & Bruno Feunou & Kris Jacobs, 2010. "Option Valuation with Conditional Heteroskedasticity and Nonnormality," The Review of Financial Studies, Society for Financial Studies, vol. 23(5), pages 2139-2183.
    10. Bing-Huei Lin & Mao-Wei Hung & Jr-Yan Wang & Ping-Da Wu, 2013. "A lattice model for option pricing under GARCH-jump processes," Review of Derivatives Research, Springer, vol. 16(3), pages 295-329, October.
    11. Rosenberg, Joshua V. & Engle, Robert F., 2002. "Empirical pricing kernels," Journal of Financial Economics, Elsevier, vol. 64(3), pages 341-372, June.
    12. Wu, Guojun & Xiao, Zhijie, 2002. "A generalized partially linear model of asymmetric volatility," Journal of Empirical Finance, Elsevier, vol. 9(3), pages 287-319, August.
    13. Li, Chao & Shang, Pengjian, 2018. "Complexity analysis based on generalized deviation for financial markets," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 494(C), pages 118-128.
    14. Markus Haas, 2004. "Mixed Normal Conditional Heteroskedasticity," Journal of Financial Econometrics, Oxford University Press, vol. 2(2), pages 211-250.
    15. Claudeci Da Silva & Hugo Agudelo Murillo & Joaquim Miguel Couto, 2014. "Early Warning Systems: Análise De Ummodelo Probit De Contágio De Crise Dos Estados Unidos Para O Brasil(2000-2010)," Anais do XL Encontro Nacional de Economia [Proceedings of the 40th Brazilian Economics Meeting] 110, ANPEC - Associação Nacional dos Centros de Pós-Graduação em Economia [Brazilian Association of Graduate Programs in Economics].
    16. Rossi, Alessandro & Gallo, Giampiero M., 2006. "Volatility estimation via hidden Markov models," Journal of Empirical Finance, Elsevier, vol. 13(2), pages 203-230, March.
    17. Cristina Amado & Annastiina Silvennoinen & Timo Teräsvirta, 2018. "Models with Multiplicative Decomposition of Conditional Variances and Correlations," CREATES Research Papers 2018-14, Department of Economics and Business Economics, Aarhus University.
    18. LUBRANO, Michel, 1998. "Smooth transition GARCH models: a Bayesian perspective," LIDAM Discussion Papers CORE 1998066, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
    19. Torben G. Andersen & Tim Bollerslev & Francis X. Diebold, 2002. "Parametric and Nonparametric Volatility Measurement," Center for Financial Institutions Working Papers 02-27, Wharton School Center for Financial Institutions, University of Pennsylvania.
    20. Lennart Berg, 2003. "Deterministic Seasonal Volatility in a Small and Integrated Stock Market: The Case of Sweden," Finnish Economic Papers, Finnish Economic Association, vol. 16(2), pages 61-71, Autumn.

    More about this item

    Keywords

    ECONOMETRICS;

    JEL classification:

    • C43 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods: Special Topics - - - Index Numbers and Aggregation

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:fth:gremaq:96.433. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thomas Krichel (email available below). General contact details of provider: https://edirc.repec.org/data/getlsfr.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.