IDEAS home Printed from https://ideas.repec.org/p/chb/bcchwp/997.html
   My bibliography  Save this paper

A Preliminary Assessment of the Economic Effects of Climate Change in Chile

Author

Listed:
  • Felipe Beltrán
  • Luigi Durand
  • Mario González-Frugone
  • Javier Moreno

Abstract

The study of energy and climate has become of primary relevance for policymakers in central banks and other institutions. Current analyses for Chile suggest medium to strong direct physical effects, with some studies pointing to relatively higher impacts in the northern and central regions. Also, indirect effects, such as those originating from green transitions around the world, are likely to be significant. This paper provides a brief review of the effects that climate change may have on the economy and describes efforts made by the Central Bank of Chile to gain a better understanding of these effects. These efforts include: geo-referencing of assets and the primary physical risks they face, characterization of the transmission channels through which climate risks can propagate, a better estimation of the uncertainty of climatic events and the development of new general equilibrium models.

Suggested Citation

  • Felipe Beltrán & Luigi Durand & Mario González-Frugone & Javier Moreno, 2023. "A Preliminary Assessment of the Economic Effects of Climate Change in Chile," Working Papers Central Bank of Chile 997, Central Bank of Chile.
  • Handle: RePEc:chb:bcchwp:997
    as

    Download full text from publisher

    File URL: https://www.bcentral.cl/documents/33528/133326/DTBC_997.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Airaudo, Florencia & Pappa, Evi & Seoane, Hernán, 2022. "Greenflation: The cost of the green transition in small open economies," Research Department working papers 1994, CAF Development Bank Of Latinamerica.
    2. Kahn, Matthew E. & Mohaddes, Kamiar & Ng, Ryan N.C. & Pesaran, M. Hashem & Raissi, Mehdi & Yang, Jui-Chung, 2021. "Long-term macroeconomic effects of climate change: A cross-country analysis," Energy Economics, Elsevier, vol. 104(C).
    3. Schreiner, Lena & Madlener, Reinhard, 2022. "Investing in power grid infrastructure as a flexibility option: A DSGE assessment for Germany," Energy Economics, Elsevier, vol. 107(C).
    4. José-Luis Cruz & Esteban Rossi-Hansberg, 2021. "The Economic Geography of Global Warming," NBER Working Papers 28466, National Bureau of Economic Research, Inc.
    5. Cortina, Magdalena & Madeira, Carlos, 2023. "Exposures to climate change's physical risks in Chile," Latin American Journal of Central Banking (previously Monetaria), Elsevier, vol. 4(2).
    6. Roberto Roson & Martina Sartori, 2016. "Estimation of Climate Change Damage Functions for 140 Regions in the GTAP 9 Database," Journal of Global Economic Analysis, Center for Global Trade Analysis, Department of Agricultural Economics, Purdue University, vol. 1(2), pages 78-115, December.
    7. Roberto Roson & Martina Sartori, 2016. "Estimation of Climate Change Damage Functions for 140 Regions in the GTAP 9 Database," Journal of Global Economic Analysis, Center for Global Trade Analysis, Department of Agricultural Economics, Purdue University, vol. 1(2), pages 78-115, December.
    8. Kalkuhl, Matthias & Wenz, Leonie, 2020. "The impact of climate conditions on economic production. Evidence from a global panel of regions," Journal of Environmental Economics and Management, Elsevier, vol. 103(C).
    9. José-Luis Cruz & Esteban Rossi-Hansberg, 2024. "The Economic Geography of Global Warming," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 91(2), pages 899-939.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Tol, Richard S.J., 2024. "A meta-analysis of the total economic impact of climate change," Energy Policy, Elsevier, vol. 185(C).
    2. Cortina, Magdalena & Madeira, Carlos, 2023. "Exposures to climate change's physical risks in Chile," Latin American Journal of Central Banking (previously Monetaria), Elsevier, vol. 4(2).
    3. Gregory Casey & Stephie Fried & Ethan Goode, 2023. "Projecting the Impact of Rising Temperatures: The Role of Macroeconomic Dynamics," IMF Economic Review, Palgrave Macmillan;International Monetary Fund, vol. 71(3), pages 688-718, September.
    4. Richard S.J. Tol, 2020. "The Economic Impact of Weather and Climate," Video Library 2093, Department of Economics, University of Sussex Business School.
    5. Carlos Madeira, 2022. "A review of the future impact of climate change in Chile: economic output and other outcomes," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 27(8), pages 1-22, December.
    6. Cascarano, Michele & Natoli, Filippo & Petrella, Andrea, 2022. "Entry, exit and market structure in a changing climate," MPRA Paper 112868, University Library of Munich, Germany.
    7. Makarov, I. & Chernokulsky, A., 2023. "Impacts of climate change on the Russian economy: Ranking of regions by adaptation needs," Journal of the New Economic Association, New Economic Association, vol. 61(4), pages 145-202.
    8. Karla Hernández & Carlos Madeira, 2021. "The impact of climate change on economic output in Chile: past and future," Working Papers Central Bank of Chile 933, Central Bank of Chile.
    9. Groom, Ben & Linsenmeier, Manuel & Roth, Sefi, 2023. "Some like it cold: Heterogeneity in the temperature-economy relationships of Europe," SocArXiv tcnad, Center for Open Science.
    10. Rudik, Ivan & Lyn, Gary & Tan, Weiliang & Ortiz-Bobea, Ariel, 2021. "Heterogeneity and Market Adaptation to Climate Change in Dynamic-Spatial Equilibrium," SocArXiv usghb, Center for Open Science.
    11. Simola, Heli, 2020. "Climate change and the Russian economy," BOFIT Policy Briefs 11/2020, Bank of Finland Institute for Emerging Economies (BOFIT).
    12. Yasmine van der Straten, 2023. "Flooded House or Underwater Mortgage? The Implications of Climate Change and Adaptation on Housing, Income & Wealth," Tinbergen Institute Discussion Papers 23-014/IV, Tinbergen Institute.
    13. Nicolas Taconet & Aurélie Méjean & Céline Guivarch, 2020. "Influence of climate change impacts and mitigation costs on inequality between countries," Climatic Change, Springer, vol. 160(1), pages 15-34, May.
    14. Roberto Roson & Richard Damania, 2016. "Simulating the Macroeconomic Impact of Future Water Scarcity: an Assessment of Alternative Scenarios," IEFE Working Papers 84, IEFE, Center for Research on Energy and Environmental Economics and Policy, Universita' Bocconi, Milano, Italy.
    15. Agarwala, Matthew & Burke, Matt & Klusak, Patrycja & Mohaddes, Kamiar & Volz, Ulrich & Zenghelis, Dimitri, 2021. "Climate Change And Fiscal Sustainability: Risks And Opportunities," National Institute Economic Review, National Institute of Economic and Social Research, vol. 258, pages 28-46, November.
    16. Jiao, Xiyu & Pretis, Felix & Schwarz, Moritz, 2024. "Testing for coefficient distortion due to outliers with an application to the economic impacts of climate change," Journal of Econometrics, Elsevier, vol. 239(1).
    17. Kamiar Mohaddes & Ryan N C Ng & M Hashem Pesaran & Mehdi Raissi & Jui-Chung Yang, 2023. "Climate change and economic activity: evidence from US states," Oxford Open Economics, Oxford University Press, vol. 2, pages 28-46.
    18. Sigit Perdana and Rod Tyers, 2020. "Global Climate Change Mitigation: Strategic Incentives," The Energy Journal, International Association for Energy Economics, vol. 0(Number 3), pages 183-206.
    19. Chepeliev, Maksym & van der Mensbrugghe, Dominique, 2017. "Global Energy Subsidies Reform: Inclusive Approaches to Welfare Assessment," Conference papers 332821, Purdue University, Center for Global Trade Analysis, Global Trade Analysis Project.
    20. Anton Orlov & Jana Sillmann & Asbjørn Aaheim & Kristin Aunan & Karianne Bruin, 2019. "Economic Losses of Heat-Induced Reductions in Outdoor Worker Productivity: a Case Study of Europe," Economics of Disasters and Climate Change, Springer, vol. 3(3), pages 191-211, October.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:chb:bcchwp:997. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Alvaro Castillo (email available below). General contact details of provider: https://edirc.repec.org/data/bccgvcl.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.