IDEAS home Printed from https://ideas.repec.org/a/bla/biomet/v67y2011i1p225-233.html
   My bibliography  Save this article

Estimation of Parameters for Macroparasite Population Evolution Using Approximate Bayesian Computation

Author

Listed:
  • C. C. Drovandi
  • A. N. Pettitt

Abstract

No abstract is available for this item.

Suggested Citation

  • C. C. Drovandi & A. N. Pettitt, 2011. "Estimation of Parameters for Macroparasite Population Evolution Using Approximate Bayesian Computation," Biometrics, The International Biometric Society, vol. 67(1), pages 225-233, March.
  • Handle: RePEc:bla:biomet:v:67:y:2011:i:1:p:225-233
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1111/j.1541-0420.2010.01410.x
    Download Restriction: Access to full text is restricted to subscribers.
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Pierre Del Moral & Arnaud Doucet & Ajay Jasra, 2006. "Sequential Monte Carlo samplers," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 68(3), pages 411-436, June.
    2. Knut Heggland & Arnoldo Frigessi, 2004. "Estimating functions in indirect inference," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 66(2), pages 447-462, May.
    3. Nicolas Chopin, 2002. "A sequential particle filter method for static models," Biometrika, Biometrika Trust, vol. 89(3), pages 539-552, August.
    4. Mark A. Beaumont & Jean-Marie Cornuet & Jean-Michel Marin & Christian P. Robert, 2009. "Adaptive approximate Bayesian computation," Biometrika, Biometrika Trust, vol. 96(4), pages 983-990.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Muchmore Patrick & Marjoram Paul, 2015. "Exact likelihood-free Markov chain Monte Carlo for elliptically contoured distributions," Statistical Applications in Genetics and Molecular Biology, De Gruyter, vol. 14(4), pages 317-332, August.
    2. Elizabeth G. Ryan & Christopher C. Drovandi & James M. McGree & Anthony N. Pettitt, 2016. "A Review of Modern Computational Algorithms for Bayesian Optimal Design," International Statistical Review, International Statistical Institute, vol. 84(1), pages 128-154, April.
    3. Prangle Dennis & Fearnhead Paul & Cox Murray P. & Biggs Patrick J. & French Nigel P., 2014. "Semi-automatic selection of summary statistics for ABC model choice," Statistical Applications in Genetics and Molecular Biology, De Gruyter, vol. 13(1), pages 67-82, February.
    4. Sun, Libo & Lee, Chihoon & Hoeting, Jennifer A., 2015. "A penalized simulated maximum likelihood approach in parameter estimation for stochastic differential equations," Computational Statistics & Data Analysis, Elsevier, vol. 84(C), pages 54-67.
    5. Silk Daniel & Filippi Sarah & Stumpf Michael P. H., 2013. "Optimizing threshold-schedules for sequential approximate Bayesian computation: applications to molecular systems," Statistical Applications in Genetics and Molecular Biology, De Gruyter, vol. 12(5), pages 603-618, October.
    6. Anthony Ebert & Kerrie Mengersen & Fabrizio Ruggeri & Paul Wu, 2021. "Curve Registration of Functional Data for Approximate Bayesian Computation," Stats, MDPI, vol. 4(3), pages 1-14, September.
    7. Drovandi, Christopher C. & McGree, James M. & Pettitt, Anthony N., 2013. "Sequential Monte Carlo for Bayesian sequentially designed experiments for discrete data," Computational Statistics & Data Analysis, Elsevier, vol. 57(1), pages 320-335.
    8. Henri Pesonen & Umberto Simola & Alvaro Köhn‐Luque & Henri Vuollekoski & Xiaoran Lai & Arnoldo Frigessi & Samuel Kaski & David T. Frazier & Worapree Maneesoonthorn & Gael M. Martin & Jukka Corander, 2023. "ABC of the future," International Statistical Review, International Statistical Institute, vol. 91(2), pages 243-268, August.
    9. Filippi Sarah & Barnes Chris P. & Stumpf Michael P.H. & Cornebise Julien, 2013. "On optimality of kernels for approximate Bayesian computation using sequential Monte Carlo," Statistical Applications in Genetics and Molecular Biology, De Gruyter, vol. 12(1), pages 87-107, March.
    10. Brenda N Vo & Christopher C Drovandi & Anthony N Pettitt & Graeme J Pettet, 2015. "Melanoma Cell Colony Expansion Parameters Revealed by Approximate Bayesian Computation," PLOS Computational Biology, Public Library of Science, vol. 11(12), pages 1-22, December.
    11. Xing Ju Lee & Christopher C. Drovandi & Anthony N. Pettitt, 2015. "Model choice problems using approximate Bayesian computation with applications to pathogen transmission data sets," Biometrics, The International Biometric Society, vol. 71(1), pages 198-207, March.
    12. Nakagome Shigeki & Fukumizu Kenji & Mano Shuhei, 2013. "Kernel approximate Bayesian computation in population genetic inferences," Statistical Applications in Genetics and Molecular Biology, De Gruyter, vol. 12(6), pages 667-678, December.
    13. Chen, C.C.-M. & Drovandi, C.C. & Keith, J.M. & Anthony, K. & Caley, M.J. & Mengersen, K.L., 2017. "Bayesian semi-individual based model with approximate Bayesian computation for parameters calibration: Modelling Crown-of-Thorns populations on the Great Barrier Reef," Ecological Modelling, Elsevier, vol. 364(C), pages 113-123.
    14. Maxime Lenormand & Franck Jabot & Guillaume Deffuant, 2013. "Adaptive approximate Bayesian computation for complex models," Computational Statistics, Springer, vol. 28(6), pages 2777-2796, December.
    15. Drovandi, Christopher C. & Pettitt, Anthony N., 2011. "Likelihood-free Bayesian estimation of multivariate quantile distributions," Computational Statistics & Data Analysis, Elsevier, vol. 55(9), pages 2541-2556, September.
    16. Creel, Michael & Kristensen, Dennis, 2016. "On selection of statistics for approximate Bayesian computing (or the method of simulated moments)," Computational Statistics & Data Analysis, Elsevier, vol. 100(C), pages 99-114.
    17. R Zachariah Aandahl & Josephine F Reyes & Scott A Sisson & Mark M Tanaka, 2012. "A Model-Based Bayesian Estimation of the Rate of Evolution of VNTR Loci in Mycobacterium tuberculosis," PLOS Computational Biology, Public Library of Science, vol. 8(6), pages 1-9, June.
    18. Li, J. & Nott, D.J. & Fan, Y. & Sisson, S.A., 2017. "Extending approximate Bayesian computation methods to high dimensions via a Gaussian copula model," Computational Statistics & Data Analysis, Elsevier, vol. 106(C), pages 77-89.
    19. Hai‐Dang Dau & Nicolas Chopin, 2022. "Waste‐free sequential Monte Carlo," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 84(1), pages 114-148, February.
    20. Warne, David J. & Baker, Ruth E. & Simpson, Matthew J., 2018. "Multilevel rejection sampling for approximate Bayesian computation," Computational Statistics & Data Analysis, Elsevier, vol. 124(C), pages 71-86.
    21. Lee, Xing Ju & Hainy, Markus & McKeone, James P. & Drovandi, Christopher C. & Pettitt, Anthony N., 2018. "ABC model selection for spatial extremes models applied to South Australian maximum temperature data," Computational Statistics & Data Analysis, Elsevier, vol. 128(C), pages 128-144.
    22. Hazra, Indranil & Pandey, Mahesh D. & Manzana, Noldainerick, 2020. "Approximate Bayesian computation (ABC) method for estimating parameters of the gamma process using noisy data," Reliability Engineering and System Safety, Elsevier, vol. 198(C).
    23. Lorenzo Pacchiardi & Pierre Künzli & Marcel Schöngens & Bastien Chopard & Ritabrata Dutta, 2021. "Distance-learning For Approximate Bayesian Computation To Model a Volcanic Eruption," Sankhya B: The Indian Journal of Statistics, Springer;Indian Statistical Institute, vol. 83(1), pages 288-317, May.
    24. Hasegawa, Takanori & Niida, Atsushi & Mori, Tomoya & Shimamura, Teppei & Yamaguchi, Rui & Miyano, Satoru & Akutsu, Tatsuya & Imoto, Seiya, 2016. "A likelihood-free filtering method via approximate Bayesian computation in evaluating biological simulation models," Computational Statistics & Data Analysis, Elsevier, vol. 94(C), pages 63-74.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Drovandi, Christopher C. & Pettitt, Anthony N., 2011. "Likelihood-free Bayesian estimation of multivariate quantile distributions," Computational Statistics & Data Analysis, Elsevier, vol. 55(9), pages 2541-2556, September.
    2. Golchi, Shirin & Campbell, David A., 2016. "Sequentially Constrained Monte Carlo," Computational Statistics & Data Analysis, Elsevier, vol. 97(C), pages 98-113.
    3. Christophe Andrieu & Arnaud Doucet & Roman Holenstein, 2010. "Particle Markov chain Monte Carlo methods," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 72(3), pages 269-342, June.
    4. Gareth W. Peters & Efstathios Panayi & Francois Septier, 2015. "SMC-ABC methods for the estimation of stochastic simulation models of the limit order book," Papers 1504.05806, arXiv.org.
    5. Arnaud Dufays, 2016. "Evolutionary Sequential Monte Carlo Samplers for Change-Point Models," Econometrics, MDPI, vol. 4(1), pages 1-33, March.
    6. Axel Finke & Adam Johansen & Dario Spanò, 2014. "Static-parameter estimation in piecewise deterministic processes using particle Gibbs samplers," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 66(3), pages 577-609, June.
    7. James Martin & Ajay Jasra & Emma McCoy, 2013. "Inference for a class of partially observed point process models," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 65(3), pages 413-437, June.
    8. Li, Dan & Clements, Adam & Drovandi, Christopher, 2021. "Efficient Bayesian estimation for GARCH-type models via Sequential Monte Carlo," Econometrics and Statistics, Elsevier, vol. 19(C), pages 22-46.
    9. Fulop, Andras & Li, Junye, 2013. "Efficient learning via simulation: A marginalized resample-move approach," Journal of Econometrics, Elsevier, vol. 176(2), pages 146-161.
    10. McGree, J.M., 2017. "Developments of the total entropy utility function for the dual purpose of model discrimination and parameter estimation in Bayesian design," Computational Statistics & Data Analysis, Elsevier, vol. 113(C), pages 207-225.
    11. Warne, David J. & Baker, Ruth E. & Simpson, Matthew J., 2018. "Multilevel rejection sampling for approximate Bayesian computation," Computational Statistics & Data Analysis, Elsevier, vol. 124(C), pages 71-86.
    12. Drovandi, Christopher C. & McGree, James M. & Pettitt, Anthony N., 2013. "Sequential Monte Carlo for Bayesian sequentially designed experiments for discrete data," Computational Statistics & Data Analysis, Elsevier, vol. 57(1), pages 320-335.
    13. Zhang, Jinyu & Zhang, Qiaosen & Li, Yong & Wang, Qianchao, 2023. "Sequential Bayesian inference for agent-based models with application to the Chinese business cycle," Economic Modelling, Elsevier, vol. 126(C).
    14. Bertl Johanna & Ewing Gregory & Kosiol Carolin & Futschik Andreas, 2017. "Approximate maximum likelihood estimation for population genetic inference," Statistical Applications in Genetics and Molecular Biology, De Gruyter, vol. 16(5-6), pages 387-405, December.
    15. Hai‐Dang Dau & Nicolas Chopin, 2022. "Waste‐free sequential Monte Carlo," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 84(1), pages 114-148, February.
    16. Edward Herbst & Frank Schorfheide, 2014. "Sequential Monte Carlo Sampling For Dsge Models," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 29(7), pages 1073-1098, November.
    17. Ajay Jasra, 2015. "Approximate Bayesian Computation for a Class of Time Series Models," International Statistical Review, International Statistical Institute, vol. 83(3), pages 405-435, December.
    18. Xiaohong Chen & Timothy M. Christensen & Elie Tamer, 2018. "Monte Carlo Confidence Sets for Identified Sets," Econometrica, Econometric Society, vol. 86(6), pages 1965-2018, November.
    19. Arnaud Dufays, 2014. "On the conjugacy of off-line and on-line Sequential Monte Carlo Samplers," Working Paper Research 263, National Bank of Belgium.
    20. Anthony Ebert & Ritabrata Dutta & Kerrie Mengersen & Antonietta Mira & Fabrizio Ruggeri & Paul Wu, 2021. "Likelihood‐free parameter estimation for dynamic queueing networks: Case study of passenger flow in an international airport terminal," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 70(3), pages 770-792, June.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:biomet:v:67:y:2011:i:1:p:225-233. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: http://www.blackwellpublishing.com/journal.asp?ref=0006-341X .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.