My bibliography
Save this item
Modelling dependence using skew t copulas: Bayesian inference and applications
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Bhat, Chandra R. & Astroza, Sebastian & Hamdi, Amin S., 2017. "A spatial generalized ordered-response model with skew normal kernel error terms with an application to bicycling frequency," Transportation Research Part B: Methodological, Elsevier, vol. 95(C), pages 126-148.
- Han, Lin & Kordzakhia, Nino & Trück, Stefan, 2020. "Volatility spillovers in Australian electricity markets," Energy Economics, Elsevier, vol. 90(C).
- Creal, Drew D. & Tsay, Ruey S., 2015. "High dimensional dynamic stochastic copula models," Journal of Econometrics, Elsevier, vol. 189(2), pages 335-345.
- Gareth W. Peters & Efstathios Panayi & Francois Septier, 2015. "SMC-ABC methods for the estimation of stochastic simulation models of the limit order book," Papers 1504.05806, arXiv.org.
- Yan, Guan & Trück, Stefan, 2020. "A dynamic network analysis of spot electricity prices in the Australian national electricity market," Energy Economics, Elsevier, vol. 92(C).
- Efstathios Panayi & Gareth W. Peters, 2015. "Stochastic simulation framework for the limit order book using liquidity-motivated agents," International Journal of Financial Engineering (IJFE), World Scientific Publishing Co. Pte. Ltd., vol. 2(02), pages 1-52.
- Villa, Cristiano & Rubio, Francisco J., 2018. "Objective priors for the number of degrees of freedom of a multivariate t distribution and the t-copula," Computational Statistics & Data Analysis, Elsevier, vol. 124(C), pages 197-219.
- Nadja Klein & Michael Stanley Smith & David J. Nott, 2023. "Deep distributional time series models and the probabilistic forecasting of intraday electricity prices," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 38(4), pages 493-511, June.
- Anatolyev, Stanislav & Pyrlik, Vladimir, 2022. "Copula shrinkage and portfolio allocation in ultra-high dimensions," Journal of Economic Dynamics and Control, Elsevier, vol. 143(C).
- Xiangqian Sun & Xing Yan & Qi Wu, 2020. "Generative Learning of Heterogeneous Tail Dependence," Papers 2011.13132, arXiv.org, revised Nov 2023.
- Lin Han & Ivor Cribben & Stefan Trueck, 2022. "Extremal Dependence in Australian Electricity Markets," Papers 2202.09970, arXiv.org.
- Patton, Andrew J., 2012. "A review of copula models for economic time series," Journal of Multivariate Analysis, Elsevier, vol. 110(C), pages 4-18.
- Manner, Hans & Alavi Fard, Farzad & Pourkhanali, Armin & Tafakori, Laleh, 2019. "Forecasting the joint distribution of Australian electricity prices using dynamic vine copulae," Energy Economics, Elsevier, vol. 78(C), pages 143-164.
- Smith, Michael Stanley & Shively, Thomas S., 2018.
"Econometric modeling of regional electricity spot prices in the Australian market,"
Energy Economics, Elsevier, vol. 74(C), pages 886-903.
- Michael Stanley Smith & Thomas S. Shively, 2018. "Econometric Modeling of Regional Electricity Spot Prices in the Australian Market," Papers 1804.08218, arXiv.org.
- Schwaab, Bernd & Lucas, André & Zhang, Xin, 2013. "Conditional and joint credit risk," Working Paper Series 1621, European Central Bank.
- Stanislav Anatolyev & Vladimir Pyrlik, 2021. "Shrinkage for Gaussian and t Copulas in Ultra-High Dimensions," CERGE-EI Working Papers wp699, The Center for Economic Research and Graduate Education - Economics Institute, Prague.
- Dong Hwan Oh & Andrew J. Patton, 2017.
"Modeling Dependence in High Dimensions With Factor Copulas,"
Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 35(1), pages 139-154, January.
- Dong Hwan Oh & Andrew J. Patton, 2015. "Modelling Dependence in High Dimensions with Factor Copulas," Finance and Economics Discussion Series 2015-51, Board of Governors of the Federal Reserve System (U.S.).
- Jäschke, Stefan, 2014. "Estimation of risk measures in energy portfolios using modern copula techniques," Computational Statistics & Data Analysis, Elsevier, vol. 76(C), pages 359-376.
- Toshinao Yoshiba, 2013. "Risk Aggregation by a Copula with a Stressed Condition," Bank of Japan Working Paper Series 13-E-12, Bank of Japan.
- Roman Matkovskyy, 2019.
"Extremal Economic (Inter)Dependence Studies: A Case of the Eastern European Countries,"
Journal of Quantitative Economics, Springer;The Indian Econometric Society (TIES), vol. 17(3), pages 667-698, September.
- Roman Matkovskyy, 2019. "Extremal Economic (Inter)Dependence Studies: A Case of the Eastern European Countries," Post-Print hal-02332090, HAL.
- Michael Stanley Smith, 2021. "Implicit Copulas: An Overview," Papers 2109.04718, arXiv.org.
- Smith, Michael Stanley & Maneesoonthorn, Worapree, 2018. "Inversion copulas from nonlinear state space models with an application to inflation forecasting," International Journal of Forecasting, Elsevier, vol. 34(3), pages 389-407.
- Nadja Klein & Michael Stanley Smith & David J. Nott, 2020. "Deep Distributional Time Series Models and the Probabilistic Forecasting of Intraday Electricity Prices," Papers 2010.01844, arXiv.org, revised May 2021.
- Balaev, Alexey, 2014. "The copula based on multivariate t-distribution with vector of degrees of freedom," Applied Econometrics, Russian Presidential Academy of National Economy and Public Administration (RANEPA), vol. 33(1), pages 90-110.
- Efstathios Panayi & Gareth Peters, 2015. "Stochastic simulation framework for the Limit Order Book using liquidity motivated agents," Papers 1501.02447, arXiv.org, revised Jan 2015.
- Okhrin, Ostap & Okhrin, Yarema & Schmid, Wolfgang, 2013. "On the structure and estimation of hierarchical Archimedean copulas," Journal of Econometrics, Elsevier, vol. 173(2), pages 189-204.
- Xu Chen & Surya T. Tokdar, 2021. "Joint quantile regression for spatial data," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 83(4), pages 826-852, September.
- Marek Omelka & Šárka Hudecová & Natalie Neumeyer, 2021. "Maximum pseudo‐likelihood estimation based on estimated residuals in copula semiparametric models," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 48(4), pages 1433-1473, December.
- Ahfock, Daniel & Pyne, Saumyadipta & Lee, Sharon X. & McLachlan, Geoffrey J., 2016. "Partial identification in the statistical matching problem," Computational Statistics & Data Analysis, Elsevier, vol. 104(C), pages 79-90.
- Wei Huang & Meng-Shiuh Chang, 2021. "Gold and Government Bonds as Safe-Haven Assets Against Stock Market Turbulence in China," SAGE Open, , vol. 11(1), pages 21582440219, January.
- Manner, Hans & Türk, Dennis & Eichler, Michael, 2016. "Modeling and forecasting multivariate electricity price spikes," Energy Economics, Elsevier, vol. 60(C), pages 255-265.
- Smith, Michael Stanley, 2023. "Implicit Copulas: An Overview," Econometrics and Statistics, Elsevier, vol. 28(C), pages 81-104.
- Rezitis, Anthony N. & Rokopanos, Andreas & Tsionas, Mike G., 2021. "Investigating dynamic price co-movements in the international milk market using copulas: The role of trade agreements," Economic Modelling, Elsevier, vol. 95(C), pages 215-227.
- Patton, Andrew, 2013. "Copula Methods for Forecasting Multivariate Time Series," Handbook of Economic Forecasting, in: G. Elliott & C. Granger & A. Timmermann (ed.), Handbook of Economic Forecasting, edition 1, volume 2, chapter 0, pages 899-960, Elsevier.