IDEAS home Printed from https://ideas.repec.org/r/spr/annopr/v102y2001i1p137-15510.1023-a1010954031930.html
   My bibliography  Save this item

Simulated Annealing for Multi-Mode Resource-Constrained Project Scheduling

Citations

Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
as


Cited by:

  1. T Wauters & K Verbeeck & G Vanden Berghe & P De Causmaecker, 2011. "Learning agents for the multi-mode project scheduling problem," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 62(2), pages 281-290, February.
  2. Mika, Marek & Waligora, Grzegorz & Weglarz, Jan, 2008. "Tabu search for multi-mode resource-constrained project scheduling with schedule-dependent setup times," European Journal of Operational Research, Elsevier, vol. 187(3), pages 1238-1250, June.
  3. Gutjahr, Walter J., 2015. "Bi-Objective Multi-Mode Project Scheduling Under Risk Aversion," European Journal of Operational Research, Elsevier, vol. 246(2), pages 421-434.
  4. Alfredo S. Ramos & Pablo A. Miranda-Gonzalez & Samuel Nucamendi-Guillén & Elias Olivares-Benitez, 2023. "A Formulation for the Stochastic Multi-Mode Resource-Constrained Project Scheduling Problem Solved with a Multi-Start Iterated Local Search Metaheuristic," Mathematics, MDPI, vol. 11(2), pages 1-25, January.
  5. Grzegorz Waligóra, 2016. "Comparative Analysis of Some Metaheuristics for Discrete-Continuous Project Scheduling with Activities of Identical Processing Rates," Asia-Pacific Journal of Operational Research (APJOR), World Scientific Publishing Co. Pte. Ltd., vol. 33(03), pages 1-32, June.
  6. Nima Zoraghi & Aria Shahsavar & Babak Abbasi & Vincent Peteghem, 2017. "Multi-mode resource-constrained project scheduling problem with material ordering under bonus–penalty policies," TOP: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 25(1), pages 49-79, April.
  7. Luis F. Machado-Domínguez & Carlos D. Paternina-Arboleda & Jorge I. Vélez & Agustin Barrios-Sarmiento, 2021. "A memetic algorithm to address the multi-node resource-constrained project scheduling problem," Journal of Scheduling, Springer, vol. 24(4), pages 413-429, August.
  8. Luis F. Machado-Domínguez & Carlos D. Paternina-Arboleda & Jorge I. Vélez & Agustín Barrios-Sarmiento, 2022. "An adaptative bacterial foraging optimization algorithm for solving the MRCPSP with discounted cash flows," TOP: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 30(2), pages 221-248, July.
  9. Yukang He & Tao Jia & Weibo Zheng, 2024. "Simulated annealing for centralised resource-constrained multiproject scheduling to minimise the maximal cash flow gap under different payment patterns," Annals of Operations Research, Springer, vol. 338(1), pages 115-149, July.
  10. Zhengwen He & Nengmin Wang & Pengxiang Li, 2014. "Simulated annealing for financing cost distribution based project payment scheduling from a joint perspective," Annals of Operations Research, Springer, vol. 213(1), pages 203-220, February.
  11. Drexl, Andreas & Nikulin, Yuri, 2005. "Multicriteria time window-constrained project scheduling with applications to airport gate assignment. Part I: Methodology," Manuskripte aus den Instituten für Betriebswirtschaftslehre der Universität Kiel 595, Christian-Albrechts-Universität zu Kiel, Institut für Betriebswirtschaftslehre.
  12. Ranjbar, Mohammad & De Reyck, Bert & Kianfar, Fereydoon, 2009. "A hybrid scatter search for the discrete time/resource trade-off problem in project scheduling," European Journal of Operational Research, Elsevier, vol. 193(1), pages 35-48, February.
  13. Cheng, Yung-Hsiang & Liang, Zheng-Xian, 2014. "A strategic planning model for the railway system accident rescue problem," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 69(C), pages 75-96.
  14. Chen, Jiaqiong & Askin, Ronald G., 2009. "Project selection, scheduling and resource allocation with time dependent returns," European Journal of Operational Research, Elsevier, vol. 193(1), pages 23-34, February.
  15. Qingzhu Yao & Xiaoyan Zhu & Way Kuo, 2014. "A Birnbaum-importance based genetic local search algorithm for component assignment problems," Annals of Operations Research, Springer, vol. 212(1), pages 185-200, January.
  16. Alireza Etminaniesfahani & Hanyu Gu & Leila Moslemi Naeni & Amir Salehipour, 2024. "An efficient relax-and-solve method for the multi-mode resource constrained project scheduling problem," Annals of Operations Research, Springer, vol. 338(1), pages 41-68, July.
  17. Elloumi, Sonda & Fortemps, Philippe, 2010. "A hybrid rank-based evolutionary algorithm applied to multi-mode resource-constrained project scheduling problem," European Journal of Operational Research, Elsevier, vol. 205(1), pages 31-41, August.
  18. Maryam Sadeghloo & Saeed Emami & Ali Divsalar, 2024. "A Benders decomposition algorithm for the multi-mode resource-constrained multi-project scheduling problem with uncertainty," Annals of Operations Research, Springer, vol. 339(3), pages 1637-1677, August.
  19. Buddhakulsomsiri, Jirachai & Kim, David S., 2006. "Properties of multi-mode resource-constrained project scheduling problems with resource vacations and activity splitting," European Journal of Operational Research, Elsevier, vol. 175(1), pages 279-295, November.
  20. Abdollah Arasteh, 2020. "Considering Project Management Activities for Engineering Design Groups," SN Operations Research Forum, Springer, vol. 1(4), pages 1-29, December.
  21. Manuel Castejón-Limas & Joaquín Ordieres-Meré & Ana González-Marcos & Víctor González-Castro, 2011. "Effort estimates through project complexity," Annals of Operations Research, Springer, vol. 186(1), pages 395-406, June.
  22. V. Van Peteghem & M. Vanhoucke, 2009. "An Artificial Immune System for the Multi-Mode Resource-Constrained Project Scheduling Problem," Working Papers of Faculty of Economics and Business Administration, Ghent University, Belgium 09/555, Ghent University, Faculty of Economics and Business Administration.
  23. Hartmann, Sönke & Briskorn, Dirk, 2010. "A survey of variants and extensions of the resource-constrained project scheduling problem," European Journal of Operational Research, Elsevier, vol. 207(1), pages 1-14, November.
  24. Peteghem, Vincent Van & Vanhoucke, Mario, 2010. "A genetic algorithm for the preemptive and non-preemptive multi-mode resource-constrained project scheduling problem," European Journal of Operational Research, Elsevier, vol. 201(2), pages 409-418, March.
  25. Felix Hübner & Patrick Gerhards & Christian Stürck & Rebekka Volk, 2021. "Solving the nuclear dismantling project scheduling problem by combining mixed-integer and constraint programming techniques and metaheuristics," Journal of Scheduling, Springer, vol. 24(3), pages 269-290, June.
  26. V. Van Peteghem & M. Vanhoucke, 2008. "A Genetic Algorithm for the Multi-Mode Resource-Constrained Project Scheduling Problem," Working Papers of Faculty of Economics and Business Administration, Ghent University, Belgium 08/494, Ghent University, Faculty of Economics and Business Administration.
  27. He, Zhengwen & Liu, Renjing & Jia, Tao, 2012. "Metaheuristics for multi-mode capital-constrained project payment scheduling," European Journal of Operational Research, Elsevier, vol. 223(3), pages 605-613.
  28. J Alcaraz & C Maroto & R Ruiz, 2003. "Solving the Multi-Mode Resource-Constrained Project Scheduling Problem with genetic algorithms," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 54(6), pages 614-626, June.
  29. Geiger, Martin Josef, 2017. "A multi-threaded local search algorithm and computer implementation for the multi-mode, resource-constrained multi-project scheduling problem," European Journal of Operational Research, Elsevier, vol. 256(3), pages 729-741.
  30. Patrick Gerhards, 2020. "The multi-mode resource investment problem: a benchmark library and a computational study of lower and upper bounds," OR Spectrum: Quantitative Approaches in Management, Springer;Gesellschaft für Operations Research e.V., vol. 42(4), pages 901-933, December.
  31. He, Naihui & Zhang, David Z. & Yuce, Baris, 2022. "Integrated multi-project planning and scheduling - a multiagent approach," European Journal of Operational Research, Elsevier, vol. 302(2), pages 688-699.
IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.