My bibliography
Save this item
Forecasting the Equity Premium: Where We Stand Today
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Sergey Nasekin & Cathy Yi-Hsuan Chen, 2020. "Deep learning-based cryptocurrency sentiment construction," Digital Finance, Springer, vol. 2(1), pages 39-67, September.
- Peñaranda, Francisco & Sentana, Enrique, 2016.
"Duality in mean-variance frontiers with conditioning information,"
Journal of Empirical Finance, Elsevier, vol. 38(PB), pages 762-785.
- Francisco Peñaranda & Enrique Sentana, 2007. "Duality in Mean-Variance Frontiers with Conditioning Information," Working Papers wp2007_0715, CEMFI.
- Sentana, Enrique & Peñaranda, Francisco, 2007. "Duality in Mean-Variance Frontiers with Conditioning Information," CEPR Discussion Papers 6566, C.E.P.R. Discussion Papers.
- Francisco Peñaranda & Enrique Sentana, 2007. "Duality in mean-variance frontiers with conditioning information," Economics Working Papers 1058, Department of Economics and Business, Universitat Pompeu Fabra.
- Narayan, Paresh Kumar & Bannigidadmath, Deepa, 2015.
"Are Indian stock returns predictable?,"
Journal of Banking & Finance, Elsevier, vol. 58(C), pages 506-531.
- Bannigidadmath, Deepa & Narayan, Paresh Kumar, 2015. "Are Indian stock returns predictable?," Working Papers fe_2015_07, Deakin University, Department of Economics.
- Nima Nonejad, 2021. "An Overview Of Dynamic Model Averaging Techniques In Time‐Series Econometrics," Journal of Economic Surveys, Wiley Blackwell, vol. 35(2), pages 566-614, April.
- Fiorentini, Gabriele & Sentana, Enrique, 2021.
"New testing approaches for mean–variance predictability,"
Journal of Econometrics, Elsevier, vol. 222(1), pages 516-538.
- Gabriele Fiorentini & Enrique Sentana, 2018. "New Testing Approaches for Mean-Variance Predictability," Working Papers wp2018_1814, CEMFI.
- Sentana, Enrique & Fiorentini, Gabriele, 2019. "New testing approaches for mean-variance predictability," CEPR Discussion Papers 13426, C.E.P.R. Discussion Papers.
- Gabriele Fiorentini & Enrique Sentana, 2019. "New testing approaches for mean-variance predictability," Working Paper series 19-01, Rimini Centre for Economic Analysis.
- Gabriele Fiorentini & Enrique Sentana, 2019. "New testing approaches for mean-variance predictability," Econometrics Working Papers Archive 2019_01, Universita' degli Studi di Firenze, Dipartimento di Statistica, Informatica, Applicazioni "G. Parenti".
- Frederico Belo & Pierre Collin-Dufresne & Robert S. Goldstein, 2012. "Endogenous Dividend Dynamics and the Term Structure of Dividend Strips," NBER Working Papers 18450, National Bureau of Economic Research, Inc.
- Liu, Li & Ma, Feng & Wang, Yudong, 2015. "Forecasting excess stock returns with crude oil market data," Energy Economics, Elsevier, vol. 48(C), pages 316-324.
- G Andrew Karolyi & Stijn Van Nieuwerburgh, 2020.
"New Methods for the Cross-Section of Returns,"
Review of Financial Studies, Society for Financial Studies, vol. 33(5), pages 1879-1890.
- G Andrew Karolyi & Stijn Van Nieuwerburgh, 2020. "New Methods for the Cross-Section of Returns," Review of Finance, European Finance Association, vol. 33(5), pages 1879-1890.
- Francisco Peñaranda & Enrique Sentana, 2024.
"Portfolio management with big data,"
Working Papers
wp2024_2411, CEMFI.
- Penaranda, Francisco & Sentana, Enrique, 2024. "Portfolio management with big data," CEPR Discussion Papers 19314, C.E.P.R. Discussion Papers.
- Obaid, Khaled & Pukthuanthong, Kuntara, 2022. "A picture is worth a thousand words: Measuring investor sentiment by combining machine learning and photos from news," Journal of Financial Economics, Elsevier, vol. 144(1), pages 273-297.
- Lutzenberger, Fabian T., 2014. "The predictability of aggregate returns on commodity futures," Review of Financial Economics, Elsevier, vol. 23(3), pages 120-130.
- Roberto Gómez‐Cram, 2022. "Late to Recessions: Stocks and the Business Cycle," Journal of Finance, American Finance Association, vol. 77(2), pages 923-966, April.
- Yu, Deshui & Huang, Difang & Chen, Li & Li, Luyang, 2023. "Forecasting dividend growth: The role of adjusted earnings yield," Economic Modelling, Elsevier, vol. 120(C).
- Dangl, Thomas & Halling, Michael, 2012. "Predictive regressions with time-varying coefficients," Journal of Financial Economics, Elsevier, vol. 106(1), pages 157-181.
- Baetje, Fabian & Menkhoff, Lukas, 2016.
"Equity premium prediction: Are economic and technical indicators unstable?,"
International Journal of Forecasting, Elsevier, vol. 32(4), pages 1193-1207.
- Baetje, Fabian & Menkhoff, Lukas, 2015. "Equity premium prediction: Are economic and technical indicators instable?," Kiel Working Papers 1987, Kiel Institute for the World Economy (IfW Kiel).
- Baetje, Fabian & Menkhoff, Lukas, 2015. "Equity premium prediction: Are economic and technical indicators instable?," VfS Annual Conference 2015 (Muenster): Economic Development - Theory and Policy 113079, Verein für Socialpolitik / German Economic Association.
- Fabian Baetje & Lukas Menkhoff, 2016. "Equity Premium Prediction: Are Economic and Technical Indicators Unstable?," Discussion Papers of DIW Berlin 1552, DIW Berlin, German Institute for Economic Research.
- Ralph S.J. Koijen & Stijn Van Nieuwerburgh, 2011.
"Predictability of Returns and Cash Flows,"
Annual Review of Financial Economics, Annual Reviews, vol. 3(1), pages 467-491, December.
- Ralph S.J. Koijen & Stijn Van Nieuwerburgh, 2010. "Predictability of Returns and Cash Flows," NBER Working Papers 16648, National Bureau of Economic Research, Inc.
- Kuntz, Laura-Chloé, 2020. "Beta dispersion and market timing," Discussion Papers 46/2020, Deutsche Bundesbank.
- Jing Tian & Qing Zhou, 2018. "Improving equity premium forecasts by incorporating structural break uncertainty," Accounting and Finance, Accounting and Finance Association of Australia and New Zealand, vol. 58(S1), pages 619-656, November.
- Zongwu Cai & Pixiong Chen, 2022. "New Online Investor Sentiment and Asset Returns," WORKING PAPERS SERIES IN THEORETICAL AND APPLIED ECONOMICS 202216, University of Kansas, Department of Economics, revised Nov 2022.
- Wang, Yudong & Hao, Xianfeng, 2023. "Forecasting the real prices of crude oil: What is the role of parameter instability?," Energy Economics, Elsevier, vol. 117(C).
- Kuntz, Laura-Chloé, 2020. "Beta dispersion and market timing," Journal of Empirical Finance, Elsevier, vol. 59(C), pages 235-256.
- Chen, Cathy Yi-Hsuan & Després, Roméo & Guo, Li & Renault, Thomas, 2019. "What makes cryptocurrencies special? Investor sentiment and return predictability during the bubble," IRTG 1792 Discussion Papers 2019-016, Humboldt University of Berlin, International Research Training Group 1792 "High Dimensional Nonstationary Time Series".
- Daniel Mantilla-García & Vijay Vaidyanathan, 2017. "Predicting stock returns in the presence of uncertain structural changes and sample noise," Financial Markets and Portfolio Management, Springer;Swiss Society for Financial Market Research, vol. 31(3), pages 357-391, August.
- Guidolin, Massimo & McMillan, David G. & Wohar, Mark E., 2013. "Time varying stock return predictability: Evidence from US sectors," Finance Research Letters, Elsevier, vol. 10(1), pages 34-40.
- Paye, Bradley S., 2012. "‘Déjà vol’: Predictive regressions for aggregate stock market volatility using macroeconomic variables," Journal of Financial Economics, Elsevier, vol. 106(3), pages 527-546.
- Risse, Marian & Ohl, Ludwig, 2017. "Using dynamic model averaging in state space representation with dynamic Occam’s window and applications to the stock and gold market," Journal of Empirical Finance, Elsevier, vol. 44(C), pages 158-176.
- Yu, Deshui & Huang, Difang, 2023. "Cross-sectional uncertainty and expected stock returns," Journal of Empirical Finance, Elsevier, vol. 72(C), pages 321-340.
- Dichtl, Hubert & Drobetz, Wolfgang & Neuhierl, Andreas & Wendt, Viktoria-Sophie, 2021. "Data snooping in equity premium prediction," International Journal of Forecasting, Elsevier, vol. 37(1), pages 72-94.
- Stivers, Adam, 2018. "Equity premium predictions with many predictors: A risk-based explanation of the size and value factors," Journal of Empirical Finance, Elsevier, vol. 45(C), pages 126-140.
- Lin, Qi, 2018. "Technical analysis and stock return predictability: An aligned approach," Journal of Financial Markets, Elsevier, vol. 38(C), pages 103-123.
- Guofu Zhou, 2018. "Measuring Investor Sentiment," Annual Review of Financial Economics, Annual Reviews, vol. 10(1), pages 239-259, November.
- Bätje, Fabian & Menkhoff, Lukas, 2016. "Predicting the equity premium via its components," VfS Annual Conference 2016 (Augsburg): Demographic Change 145789, Verein für Socialpolitik / German Economic Association.
- Belo, Frederico & Yu, Jianfeng, 2013. "Government investment and the stock market," Journal of Monetary Economics, Elsevier, vol. 60(3), pages 325-339.
- Arnaud Dufays & Zhuo Li & Jeroen V.K. Rombouts & Yong Song, 2021. "Sparse change‐point VAR models," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 36(6), pages 703-727, September.
- Fabian T. Lutzenberger, 2014. "The predictability of aggregate returns on commodity futures," Review of Financial Economics, John Wiley & Sons, vol. 23(3), pages 120-130, September.
- Panagiotis Delis & Stavros Degiannakis & George Filis, 2022. "What matters when developing oil price volatility forecasting frameworks?," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 41(2), pages 361-382, March.
- Li Liu & Zhiyuan Pan & Yudong Wang, 2021. "What can we learn from the return predictability over the business cycle?," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 40(1), pages 108-131, January.