IDEAS home Printed from https://ideas.repec.org/r/inm/oropre/v37y1989i5p716-740.html
   My bibliography  Save this item

A Dual-Ascent Procedure for Large-Scale Uncapacitated Network Design

Citations

Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
as


Cited by:

  1. Ping Josephine Xu & Russell Allgor & Stephen C. Graves, 2009. "Benefits of Reevaluating Real-Time Order Fulfillment Decisions," Manufacturing & Service Operations Management, INFORMS, vol. 11(2), pages 340-355, January.
  2. Rafael Epstein & Lysette Henríquez & Jaime Catalán & Gabriel Y. Weintraub & Cristián Martínez, 2002. "A Combinational Auction Improves School Meals in Chile," Interfaces, INFORMS, vol. 32(6), pages 1-14, December.
  3. Alexey Sorokin & Vladimir Boginski & Artyom Nahapetyan & Panos M. Pardalos, 2013. "Computational risk management techniques for fixed charge network flow problems with uncertain arc failures," Journal of Combinatorial Optimization, Springer, vol. 25(1), pages 99-122, January.
  4. Jeffery L. Kennington & Charles D. Nicholson, 2010. "The Uncapacitated Time-Space Fixed-Charge Network Flow Problem: An Empirical Investigation of Procedures for Arc Capacity Assignment," INFORMS Journal on Computing, INFORMS, vol. 22(2), pages 326-337, May.
  5. Keely L. Croxton & Bernard Gendron & Thomas L. Magnanti, 2003. "Models and Methods for Merge-in-Transit Operations," Transportation Science, INFORMS, vol. 37(1), pages 1-22, February.
  6. Rafael Epstein & Andrés Weintraub & Pedro Sapunar & Enrique Nieto & Julian B. Sessions & John Sessions & Fernando Bustamante & Hugo Musante, 2006. "A Combinatorial Heuristic Approach for Solving Real-Size Machinery Location and Road Design Problems in Forestry Planning," Operations Research, INFORMS, vol. 54(6), pages 1017-1027, December.
  7. Herrmann, J. W. & Ioannou, G. & Minis, I. & Proth, J. M., 1996. "A dual ascent approach to the fixed-charge capacitated network design problem," European Journal of Operational Research, Elsevier, vol. 95(3), pages 476-490, December.
  8. H Gunnarsson & M Rönnqvist & D Carlsson, 2006. "A combined terminal location and ship routing problem," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 57(8), pages 928-938, August.
  9. Tadashi Yamada & Bona Frazila Russ & Jun Castro & Eiichi Taniguchi, 2009. "Designing Multimodal Freight Transport Networks: A Heuristic Approach and Applications," Transportation Science, INFORMS, vol. 43(2), pages 129-143, May.
  10. Amiri, Ali & Pirkul, Hasan, 1996. "Primary and secondary route selection in backbone communication networks," European Journal of Operational Research, Elsevier, vol. 93(1), pages 98-109, August.
  11. Fragkos, Ioannis & Cordeau, Jean-François & Jans, Raf, 2021. "Decomposition methods for large-scale network expansion problems," Transportation Research Part B: Methodological, Elsevier, vol. 144(C), pages 60-80.
  12. Üster, Halit & Wang, Xinghua & Yates, Justin T., 2018. "Strategic Evacuation Network Design (SEND) under cost and time considerations," Transportation Research Part B: Methodological, Elsevier, vol. 107(C), pages 124-145.
  13. Contreras, Ivan & Fernández, Elena, 2012. "General network design: A unified view of combined location and network design problems," European Journal of Operational Research, Elsevier, vol. 219(3), pages 680-697.
  14. Melkote, Sanjay & Daskin, Mark S., 2001. "Capacitated facility location/network design problems," European Journal of Operational Research, Elsevier, vol. 129(3), pages 481-495, March.
  15. Balakrishnan, Anantaram & Karsten, Christian Vad, 2017. "Container shipping service selection and cargo routing with transshipment limits," European Journal of Operational Research, Elsevier, vol. 263(2), pages 652-663.
  16. Cynthia Barnhart & Hong Jin & Pamela H. Vance, 2000. "Railroad Blocking: A Network Design Application," Operations Research, INFORMS, vol. 48(4), pages 603-614, August.
  17. Moon-gil Yoon & Young-ho Baek & Dong-wan Tcha, 1998. "Design of a distributed fiber transport network with hubbing topology," European Journal of Operational Research, Elsevier, vol. 104(3), pages 510-520, February.
  18. Ahmad I. Jarrah & Ellis Johnson & Lucas C. Neubert, 2009. "Large-Scale, Less-than-Truckload Service Network Design," Operations Research, INFORMS, vol. 57(3), pages 609-625, June.
  19. Anantaram Balakrishnan & Gang Li & Prakash Mirchandani, 2017. "Optimal Network Design with End-to-End Service Requirements," Operations Research, INFORMS, vol. 65(3), pages 729-750, June.
  20. Gouveia, Luis, 1996. "Multicommodity flow models for spanning trees with hop constraints," European Journal of Operational Research, Elsevier, vol. 95(1), pages 178-190, November.
  21. Contreras, Ivan & Fernández, Elena & Reinelt, Gerhard, 2012. "Minimizing the maximum travel time in a combined model of facility location and network design," Omega, Elsevier, vol. 40(6), pages 847-860.
  22. Cocking, Cara & Flessa, Steffen & Reinelt, Gerhard, 2012. "Improving access to health facilities in Nouna district, Burkina Faso," Socio-Economic Planning Sciences, Elsevier, vol. 46(2), pages 164-172.
  23. Sung, C. S. & Jin, H. W., 2001. "Dual-based approach for a hub network design problem under non-restrictive policy," European Journal of Operational Research, Elsevier, vol. 132(1), pages 88-105, July.
  24. Sabyasachi Mitra & Ishwar Murthy, 1998. "A Dual Ascent Procedure with Valid Inequalities for Designing Hierarchical Network Topologies," INFORMS Journal on Computing, INFORMS, vol. 10(1), pages 40-55, February.
  25. Keely L. Croxton & Bernard Gendron & Thomas L. Magnanti, 2007. "Variable Disaggregation in Network Flow Problems with Piecewise Linear Costs," Operations Research, INFORMS, vol. 55(1), pages 146-157, February.
  26. Kaj Holmberg & Di Yuan, 2000. "A Lagrangian Heuristic Based Branch-and-Bound Approach for the Capacitated Network Design Problem," Operations Research, INFORMS, vol. 48(3), pages 461-481, June.
  27. Markus Leitner & Ivana Ljubić & Martin Luipersbeck & Markus Sinnl, 2018. "A Dual Ascent-Based Branch-and-Bound Framework for the Prize-Collecting Steiner Tree and Related Problems," INFORMS Journal on Computing, INFORMS, vol. 30(2), pages 402-420, May.
  28. Gendron, Bernard, 2002. "A note on "a dual-ascent approach to the fixed-charge capacitated network design problem"," European Journal of Operational Research, Elsevier, vol. 138(3), pages 671-675, May.
  29. Crainic, Teodor Gabriel & Laporte, Gilbert, 1997. "Planning models for freight transportation," European Journal of Operational Research, Elsevier, vol. 97(3), pages 409-438, March.
  30. Melkote, Sanjay & Daskin, Mark S., 2001. "An integrated model of facility location and transportation network design," Transportation Research Part A: Policy and Practice, Elsevier, vol. 35(6), pages 515-538, July.
  31. Kaj Holmberg & Johan Hellstrand, 1998. "Solving the Uncapacitated Network Design Problem by a Lagrangean Heuristic and Branch-and-Bound," Operations Research, INFORMS, vol. 46(2), pages 247-259, April.
  32. Agarwal, Y.K. & Aneja, Y.P., 2017. "Fixed charge multicommodity network design using p-partition facets," European Journal of Operational Research, Elsevier, vol. 258(1), pages 124-135.
  33. Teodor Gabriel Crainic & Michel Gendreau & Judith M. Farvolden, 2000. "A Simplex-Based Tabu Search Method for Capacitated Network Design," INFORMS Journal on Computing, INFORMS, vol. 12(3), pages 223-236, August.
  34. Li, Gang & Balakrishnan, Anantaram, 2016. "Models and algorithms for network reduction," European Journal of Operational Research, Elsevier, vol. 248(3), pages 930-942.
  35. Crainic, Teodor Gabriel, 2000. "Service network design in freight transportation," European Journal of Operational Research, Elsevier, vol. 122(2), pages 272-288, April.
  36. Bjorndal, M. H. & Caprara, A. & Cowling, P. I. & Della Croce, F. & Lourenco, H. & Malucelli, F. & Orman, A. J. & Pisinger, D. & Rego, C. & Salazar, J. J., 1995. "Some thoughts on combinatorial optimisation," European Journal of Operational Research, Elsevier, vol. 83(2), pages 253-270, June.
  37. Abdolsalam Ghaderi, 2015. "Heuristic Algorithms for Solving an Integrated Dynamic Center Facility Location - Network Design Model," Networks and Spatial Economics, Springer, vol. 15(1), pages 43-69, March.
  38. Leo Bont & Hans Heinimann & Richard Church, 2015. "Concurrent optimization of harvesting and road network layouts under steep terrain," Annals of Operations Research, Springer, vol. 232(1), pages 41-64, September.
  39. Anantaram Balakrishnan & Prakash Mirchandani & Harihara Prasad Natarajan, 2009. "Connectivity Upgrade Models for Survivable Network Design," Operations Research, INFORMS, vol. 57(1), pages 170-186, February.
  40. M-G Yoon & J Current, 2008. "The hub location and network design problem with fixed and variable arc costs: formulation and dual-based solution heuristic," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 59(1), pages 80-89, January.
  41. M. Gisela Bardossy & S. Raghavan, 2010. "Dual-Based Local Search for the Connected Facility Location and Related Problems," INFORMS Journal on Computing, INFORMS, vol. 22(4), pages 584-602, November.
IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.