IDEAS home Printed from https://ideas.repec.org/r/hal/journl/hal-01682301.html
   My bibliography  Save this item

Energy consumption and activity patterns: an analysis extended to total time and energy use for French households

Citations

Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
as


Cited by:

  1. Zhu, Penghu & Lin, Boqiang, 2022. "Do the elderly consume more energy? Evidence from the retirement policy in urban China," Energy Policy, Elsevier, vol. 165(C).
  2. Smetschka, Barbara & Wiedenhofer, Dominik & Egger, Claudine & Haselsteiner, Edeltraud & Moran, Daniel & Gaube, Veronika, 2019. "Time Matters: The Carbon Footprint of Everyday Activities in Austria," Ecological Economics, Elsevier, vol. 164(C), pages 1-1.
  3. Zhen Hu & Mei Wang & Zhe Cheng, 2022. "Mapping the knowledge development and trend of household energy consumption," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 24(5), pages 6053-6071, May.
  4. Franziska Klein & Jeroen van den Bergh, 2021. "The employment double dividend of environmental tax reforms: exploring the role of agent behaviour and social interaction," Journal of Environmental Economics and Policy, Taylor & Francis Journals, vol. 10(2), pages 189-213, April.
  5. Katharina Bohnenberger, 2022. "Greening work: labor market policies for the environment," Empirica, Springer;Austrian Institute for Economic Research;Austrian Economic Association, vol. 49(2), pages 347-368, May.
  6. Schlör, H. & Venghaus, S. & Zapp, P. & Marx, J. & Schreiber, A. & Hake, J.-Fr., 2018. "The energy-mineral-society nexus – A social LCA model," Applied Energy, Elsevier, vol. 228(C), pages 999-1008.
  7. Jasiński, Tomasz, 2019. "Modeling electricity consumption using nighttime light images and artificial neural networks," Energy, Elsevier, vol. 179(C), pages 831-842.
  8. Lei, Mingyu & Cai, Wenjia & Liu, Wenling & Wang, Can, 2022. "The heterogeneity in energy consumption patterns and home appliance purchasing preferences across urban households in China," Energy, Elsevier, vol. 253(C).
  9. Marlena Piekut, 2021. "The Consumption of Renewable Energy Sources (RES) by the European Union Households between 2004 and 2019," Energies, MDPI, vol. 14(17), pages 1-31, September.
  10. Haiyan Duan & Shipei Zhang & Siying Duan & Weicheng Zhang & Zhiyuan Duan & Shuo Wang & Junnian Song & Xian’en Wang, 2019. "Carbon Emissions Peak Prediction and the Reduction Pathway in Buildings during Operation in Jilin Province Based on LEAP," Sustainability, MDPI, vol. 11(17), pages 1-23, August.
  11. Bambang Santoso Haryono & Abdul Hakim & Mardiono Mardiono & Safri Safri & Qomariyatus Sholihah, 2020. "The Impact of Energy Production, Consumption and Import on the Budgetary Energy Requirement of Indonesia," International Journal of Energy Economics and Policy, Econjournals, vol. 10(6), pages 588-593.
  12. Wen, Hanguan & Liu, Xiufeng & Yang, Ming & Lei, Bo & Xu, Cheng & Chen, Zhe, 2024. "A novel approach for identifying customer groups for personalized demand-side management services using household socio-demographic data," Energy, Elsevier, vol. 286(C).
  13. Yu, Biying & Yang, Xiaojuan & Zhao, Qingyu & Tan, Jinxiao, 2020. "Causal Effect of Time-Use Behavior on Residential Energy Consumption in China," Ecological Economics, Elsevier, vol. 175(C).
  14. Dalia Štreimikienė & Vidas Lekavičius & Gintare Stankūnienė & Aušra Pažėraitė, 2022. "Renewable Energy Acceptance by Households: Evidence from Lithuania," Sustainability, MDPI, vol. 14(14), pages 1-17, July.
  15. Nadimi, Reza & Tokimatsu, Koji, 2018. "Modeling of quality of life in terms of energy and electricity consumption," Applied Energy, Elsevier, vol. 212(C), pages 1282-1294.
  16. Junling Liu & Mingjian Yin & Ke Wang & Ji Zou & Ying Kong, 2020. "Long-term impacts of urbanization through population migration on China’s energy demand and CO2 emissions," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 25(6), pages 1053-1071, August.
  17. Wang, Shubin & Sun, Shaolong & Zhao, Erlong & Wang, Shouyang, 2021. "Urban and rural differences with regional assessment of household energy consumption in China," Energy, Elsevier, vol. 232(C).
  18. Yamei Chen & Lu Jiang, 2022. "Influencing Factors of Direct Carbon Emissions of Households in Urban Villages in Guangzhou, China," IJERPH, MDPI, vol. 19(24), pages 1-14, December.
  19. Lu Jiang & Bowenpeng Ding & Xiaonan Shi & Chunhua Li & Yamei Chen, 2022. "Household Energy Consumption Patterns and Carbon Emissions for the Megacities—Evidence from Guangzhou, China," Energies, MDPI, vol. 15(8), pages 1-21, April.
  20. Davies, Simon R. & Lupton, Richard C. & Allwood, Julian M., 2024. "How energy demand and wellbeing change as we use our time differently," Energy Policy, Elsevier, vol. 189(C).
  21. Zhang, Junjie & Yu, Shiwei & Xiong, Xingyi & Hu, Xing, 2024. "Impacts of ICT penetration shaping nonworking time use on indirect carbon emissions: Evidence from Chinese households," Energy Economics, Elsevier, vol. 129(C).
  22. Zhang, Hongwu & Shi, Xunpeng & Wang, Keying & Xue, Jinjun & Song, Ligang & Sun, Yongping, 2020. "Intertemporal lifestyle changes and carbon emissions: Evidence from a China household survey," Energy Economics, Elsevier, vol. 86(C).
  23. Cansino, José M. & Dugo, Víctor & Gálvez-Ruiz, David & Román-Collado, Rocío, 2023. "What drove electricity consumption in the residential sector during the SARS-CoV-2 confinement? A special focus on university students in southern Spain," Energy, Elsevier, vol. 262(PB).
  24. Pérez-Sánchez, Laura À. & Velasco-Fernández, Raúl & Giampietro, Mario, 2022. "Factors and actions for the sustainability of the residential sector. The nexus of energy, materials, space, and time use," Renewable and Sustainable Energy Reviews, Elsevier, vol. 161(C).
  25. Frantál, Bohumil & Dvořák, Petr, 2022. "Reducing energy poverty in deprived regions or supporting new developments in metropolitan suburbs? Regional differences in the use of subsidies for home energy efficiency renovations," Energy Policy, Elsevier, vol. 171(C).
  26. Satre-Meloy, Aven & Diakonova, Marina & Grünewald, Philipp, 2020. "Cluster analysis and prediction of residential peak demand profiles using occupant activity data," Applied Energy, Elsevier, vol. 260(C).
IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.