IDEAS home Printed from https://ideas.repec.org/r/hal/journl/hal-00805730.html
   My bibliography  Save this item

Energy Intensity Development of the German Iron and Steel Industry between 1991 and 2007

Citations

Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
as


Cited by:

  1. Porzio, Giacomo Filippo & Nastasi, Gianluca & Colla, Valentina & Vannucci, Marco & Branca, Teresa Annunziata, 2014. "Comparison of multi-objective optimization techniques applied to off-gas management within an integrated steelwork," Applied Energy, Elsevier, vol. 136(C), pages 1085-1097.
  2. Chai, Jingxia & Wu, Haitao & Hao, Yu, 2022. "Planned economic growth and controlled energy demand: How do regional growth targets affect energy consumption in China?," Technological Forecasting and Social Change, Elsevier, vol. 185(C).
  3. Honma, Satoshi & Hu, Jin-Li, 2014. "A panel data parametric frontier technique for measuring total-factor energy efficiency: An application to Japanese regions," Energy, Elsevier, vol. 78(C), pages 732-739.
  4. Arens, M. & Worrell, E., 2014. "Diffusion of energy efficient technologies in the German steel industry and their impact on energy consumption," Energy, Elsevier, vol. 73(C), pages 968-977.
  5. Brunke, Jean-Christian & Blesl, Markus, 2014. "A plant-specific bottom-up approach for assessing the cost-effective energy conservation potential and its ability to compensate rising energy-related costs in the German iron and steel industry," Energy Policy, Elsevier, vol. 67(C), pages 431-446.
  6. Zhang, Qi & Xu, Jin & Wang, Yujie & Hasanbeigi, Ali & Zhang, Wei & Lu, Hongyou & Arens, Marlene, 2018. "Comprehensive assessment of energy conservation and CO2 emissions mitigation in China’s iron and steel industry based on dynamic material flows," Applied Energy, Elsevier, vol. 209(C), pages 251-265.
  7. El-Kharashi, Eyhab, 2014. "Detailed comparative study regarding different formulae of predicting the iron losses in a machine excited by non-sinusoidal supply," Energy, Elsevier, vol. 73(C), pages 513-522.
  8. Zeng, Yujiao & Xiao, Xin & Li, Jie & Sun, Li & Floudas, Christodoulos A. & Li, Hechang, 2018. "A novel multi-period mixed-integer linear optimization model for optimal distribution of byproduct gases, steam and power in an iron and steel plant," Energy, Elsevier, vol. 143(C), pages 881-899.
  9. Zha, Jianping & Tan, Ting & Fan, Rong & Xu, Han & Ma, Siqi, 2020. "How to reduce energy intensity to achieve sustainable development of China's transport sector? A cross-regional comparison analysis," Socio-Economic Planning Sciences, Elsevier, vol. 71(C).
  10. Kepplinger, D. & Templ, M. & Upadhyaya, S., 2013. "Analysis of energy intensity in manufacturing industry using mixed-effects models," Energy, Elsevier, vol. 59(C), pages 754-763.
  11. Zhang, Qi & Zhao, Xiaoyu & Lu, Hongyou & Ni, Tuanjie & Li, Yu, 2017. "Waste energy recovery and energy efficiency improvement in China’s iron and steel industry," Applied Energy, Elsevier, vol. 191(C), pages 502-520.
  12. Bhadbhade, Navdeep & Zuberi, M. Jibran S. & Patel, Martin K., 2019. "A bottom-up analysis of energy efficiency improvement and CO2 emission reduction potentials for the swiss metals sector," Energy, Elsevier, vol. 181(C), pages 173-186.
  13. Sheinbaum-Pardo, Claudia, 2016. "Decomposition analysis from demand services to material production: The case of CO2 emissions from steel produced for automobiles in Mexico," Applied Energy, Elsevier, vol. 174(C), pages 245-255.
  14. Konstantinos Koasidis & Alexandros Nikas & Hera Neofytou & Anastasios Karamaneas & Ajay Gambhir & Jakob Wachsmuth & Haris Doukas, 2020. "The UK and German Low-Carbon Industry Transitions from a Sectoral Innovation and System Failures Perspective," Energies, MDPI, vol. 13(19), pages 1-34, September.
  15. Stefan Vögele & Dirk Rübbelke & Kristina Govorukha & Matthias Grajewski, 2020. "Socio-technical scenarios for energy-intensive industries: the future of steel production in Germany," Climatic Change, Springer, vol. 162(4), pages 1763-1778, October.
  16. Bożena Gajdzik & Włodzimierz Sroka & Jolita Vveinhardt, 2021. "Energy Intensity of Steel Manufactured Utilising EAF Technology as a Function of Investments Made: The Case of the Steel Industry in Poland," Energies, MDPI, vol. 14(16), pages 1-17, August.
  17. Rehfeldt, M. & Worrell, E. & Eichhammer, W. & Fleiter, T., 2020. "A review of the emission reduction potential of fuel switch towards biomass and electricity in European basic materials industry until 2030," Renewable and Sustainable Energy Reviews, Elsevier, vol. 120(C).
  18. Hasanbeigi, Ali & Arens, Marlene & Cardenas, Jose Carlos Rojas & Price, Lynn & Triolo, Ryan, 2016. "Comparison of carbon dioxide emissions intensity of steel production in China, Germany, Mexico, and the United States," Resources, Conservation & Recycling, Elsevier, vol. 113(C), pages 127-139.
  19. Wang, Peng & Zhao, Shen & Dai, Tao & Peng, Kun & Zhang, Qi & Li, Jiashuo & Chen, Wei-Qiang, 2022. "Regional disparities in steel production and restrictions to progress on global decarbonization: A cross-national analysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 161(C).
  20. Wu, Junnian & Pu, Guangying & Guo, Yan & Lv, Jingwen & Shang, Jiangwei, 2018. "Retrospective and prospective assessment of exergy, life cycle carbon emissions, and water footprint for coking network evolution in China," Applied Energy, Elsevier, vol. 218(C), pages 479-493.
  21. Acquaye, Adolf & Ibn-Mohammed, Taofeeq & Genovese, Andrea & Afrifa, Godfred A & Yamoah, Fred A & Oppon, Eunice, 2018. "A quantitative model for environmentally sustainable supply chain performance measurement," European Journal of Operational Research, Elsevier, vol. 269(1), pages 188-205.
  22. Porzio, Giacomo Filippo & Fornai, Barbara & Amato, Alessandro & Matarese, Nicola & Vannucci, Marco & Chiappelli, Lisa & Colla, Valentina, 2013. "Reducing the energy consumption and CO2 emissions of energy intensive industries through decision support systems – An example of application to the steel industry," Applied Energy, Elsevier, vol. 112(C), pages 818-833.
  23. Samet, Haidar & Ghanbari, Teymoor & Ghaisari, Jafar, 2014. "Maximizing the transferred power to electric arc furnace for having maximum production," Energy, Elsevier, vol. 72(C), pages 752-759.
  24. Chen, Wenying & Yin, Xiang & Ma, Ding, 2014. "A bottom-up analysis of China’s iron and steel industrial energy consumption and CO2 emissions," Applied Energy, Elsevier, vol. 136(C), pages 1174-1183.
  25. Wei, Rufei & Zhang, Lingling & Cang, Daqiang & Li, Jiaxin & Li, Xianwei & Xu, Chunbao Charles, 2017. "Current status and potential of biomass utilization in ferrous metallurgical industry," Renewable and Sustainable Energy Reviews, Elsevier, vol. 68(P1), pages 511-524.
  26. Hasanbeigi, Ali & Morrow, William & Sathaye, Jayant & Masanet, Eric & Xu, Tengfang, 2013. "A bottom-up model to estimate the energy efficiency improvement and CO2 emission reduction potentials in the Chinese iron and steel industry," Energy, Elsevier, vol. 50(C), pages 315-325.
IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.