IDEAS home Printed from https://ideas.repec.org/r/eee/renene/v85y2016icp359-370.html
   My bibliography  Save this item

The impact of land use constraints in multi-objective energy-noise wind farm layout optimization

Citations

Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
as


Cited by:

  1. Zeng, Bo & Zhang, Weixiang & Hu, Pinduan & Sun, Jing & Gong, Dunwei, 2023. "Synergetic renewable generation allocation and 5G base station placement for decarbonizing development of power distribution system: A multi-objective interval evolutionary optimization approach," Applied Energy, Elsevier, vol. 351(C).
  2. Cao, Lichao & Ge, Mingwei & Gao, Xiaoxia & Du, Bowen & Li, Baoliang & Huang, Zhi & Liu, Yongqian, 2022. "Wind farm layout optimization to minimize the wake induced turbulence effect on wind turbines," Applied Energy, Elsevier, vol. 323(C).
  3. Antonini, Enrico G.A. & Romero, David A. & Amon, Cristina H., 2018. "Continuous adjoint formulation for wind farm layout optimization: A 2D implementation," Applied Energy, Elsevier, vol. 228(C), pages 2333-2345.
  4. Davide Astolfi & Francesco Castellani, 2019. "Wind Turbine Power Curve Upgrades: Part II," Energies, MDPI, vol. 12(8), pages 1-20, April.
  5. Wang, Long & Wang, Tongguang & Wu, Jianghai & Chen, Guoping, 2017. "Multi-objective differential evolution optimization based on uniform decomposition for wind turbine blade design," Energy, Elsevier, vol. 120(C), pages 346-361.
  6. Antonini, Enrico G.A. & Romero, David A. & Amon, Cristina H., 2020. "Optimal design of wind farms in complex terrains using computational fluid dynamics and adjoint methods," Applied Energy, Elsevier, vol. 261(C).
  7. Ling, Ziyan & Zhao, Zhenzhou & Liu, Yige & Liu, Huiwen & Ali, Kashif & Liu, Yan & Wen, Yifan & Wang, Dingding & Li, Shijun & Su, Chunhao, 2024. "Multi-objective layout optimization for wind farms based on non-uniformly distributed turbulence and a new three-dimensional multiple wake model," Renewable Energy, Elsevier, vol. 227(C).
  8. Kyoungboo Yang & Kyungho Cho, 2019. "Simulated Annealing Algorithm for Wind Farm Layout Optimization: A Benchmark Study," Energies, MDPI, vol. 12(23), pages 1-15, November.
  9. Dinçer, A.Ersin & Demir, A. & Yılmaz, K., 2023. "Enhancing wind turbine site selection through a novel wake penalty criterion," Energy, Elsevier, vol. 283(C).
  10. Cao, Jiu Fa & Zhu, Wei Jun & Shen, Wen Zhong & Sørensen, Jens Nørkær & Sun, Zhen Ye, 2020. "Optimizing wind energy conversion efficiency with respect to noise: A study on multi-criteria wind farm layout design," Renewable Energy, Elsevier, vol. 159(C), pages 468-485.
  11. Azlan, F. & Kurnia, J.C. & Tan, B.T. & Ismadi, M.-Z., 2021. "Review on optimisation methods of wind farm array under three classical wind condition problems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 135(C).
  12. Reddy, Sohail R., 2021. "A machine learning approach for modeling irregular regions with multiple owners in wind farm layout design," Energy, Elsevier, vol. 220(C).
  13. Wang, Longyan & Cholette, Michael E. & Zhou, Yunkai & Yuan, Jianping & Tan, Andy C.C. & Gu, Yuantong, 2018. "Effectiveness of optimized control strategy and different hub height turbines on a real wind farm optimization," Renewable Energy, Elsevier, vol. 126(C), pages 819-829.
  14. Reddy, Sohail R., 2020. "Wind Farm Layout Optimization (WindFLO) : An advanced framework for fast wind farm analysis and optimization," Applied Energy, Elsevier, vol. 269(C).
  15. Tingey, Eric B. & Ning, Andrew, 2017. "Trading off sound pressure level and average power production for wind farm layout optimization," Renewable Energy, Elsevier, vol. 114(PB), pages 547-555.
  16. Reddy, Sohail R., 2021. "An efficient method for modeling terrain and complex terrain boundaries in constrained wind farm layout optimization," Renewable Energy, Elsevier, vol. 165(P1), pages 162-173.
  17. Parada, Leandro & Herrera, Carlos & Flores, Paulo & Parada, Victor, 2018. "Assessing the energy benefit of using a wind turbine micro-siting model," Renewable Energy, Elsevier, vol. 118(C), pages 591-601.
  18. Bolwig, Simon & Bazbauers, Gatis & Klitkou, Antje & Lund, Peter D. & Blumberga, Andra & Gravelsins, Armands & Blumberga, Dagnija, 2019. "Review of modelling energy transitions pathways with application to energy system flexibility," Renewable and Sustainable Energy Reviews, Elsevier, vol. 101(C), pages 440-452.
  19. Yang, Kyoungboo & Kwak, Gyeongil & Cho, Kyungho & Huh, Jongchul, 2019. "Wind farm layout optimization for wake effect uniformity," Energy, Elsevier, vol. 183(C), pages 983-995.
  20. Dhoot, Aditya & Antonini, Enrico G.A. & Romero, David A. & Amon, Cristina H., 2021. "Optimizing wind farms layouts for maximum energy production using probabilistic inference: Benchmarking reveals superior computational efficiency and scalability," Energy, Elsevier, vol. 223(C).
  21. Caporale, Diana & Sangiorgio, Valentino & Amodio, Alessandro & De Lucia, Caterina, 2020. "Multi-criteria and focus group analysis for social acceptance of wind energy," Energy Policy, Elsevier, vol. 140(C).
  22. Lo Brutto, Ottavio A. & Nguyen, Van Thinh & Guillou, Sylvain S. & Thiébot, Jérôme & Gualous, Hamid, 2016. "Tidal farm analysis using an analytical model for the flow velocity prediction in the wake of a tidal turbine with small diameter to depth ratio," Renewable Energy, Elsevier, vol. 99(C), pages 347-359.
  23. Chen, Le & Harding, Chris & Sharma, Anupam & MacDonald, Erin, 2016. "Modeling noise and lease soft costs improves wind farm design and cost-of-energy predictions," Renewable Energy, Elsevier, vol. 97(C), pages 849-859.
  24. Moreno, Sinvaldo Rodrigues & Pierezan, Juliano & Coelho, Leandro dos Santos & Mariani, Viviana Cocco, 2021. "Multi-objective lightning search algorithm applied to wind farm layout optimization," Energy, Elsevier, vol. 216(C).
  25. Guirguis, David & Romero, David A. & Amon, Cristina H., 2016. "Toward efficient optimization of wind farm layouts: Utilizing exact gradient information," Applied Energy, Elsevier, vol. 179(C), pages 110-123.
  26. Liu, W.Y., 2017. "A review on wind turbine noise mechanism and de-noising techniques," Renewable Energy, Elsevier, vol. 108(C), pages 311-320.
  27. Wu, Xiawei & Hu, Weihao & Huang, Qi & Chen, Cong & Jacobson, Mark Z. & Chen, Zhe, 2020. "Optimizing the layout of onshore wind farms to minimize noise," Applied Energy, Elsevier, vol. 267(C).
  28. Teklebrhan Negash & Erik Möllerström & Fredric Ottermo, 2020. "An Assessment of Wind Energy Potential for the Three Topographic Regions of Eritrea," Energies, MDPI, vol. 13(7), pages 1-12, April.
  29. Wang, Longyan & Zuo, Ming J. & Xu, Jian & Zhou, Yunkai & Tan, Andy C., 2019. "Optimizing wind farm layout by addressing energy-variance trade-off: A single-objective optimization approach," Energy, Elsevier, vol. 189(C).
  30. Mittal, Prateek & Christopoulos, Giorgos & Subramanian, Sriram, 2024. "Energy enhancement through noise minimization using acoustic metamaterials in a wind farm," Renewable Energy, Elsevier, vol. 224(C).
  31. He, Ruiyang & Sun, Haiying & Gao, Xiaoxia & Yang, Hongxing, 2022. "Wind tunnel tests for wind turbines: A state-of-the-art review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 166(C).
  32. Dinçer, A.E. & Demir, A. & Yılmaz, K., 2024. "Multi-objective turbine allocation on a wind farm site," Applied Energy, Elsevier, vol. 355(C).
  33. Long Wang & Ran Han & Tongguang Wang & Shitang Ke, 2018. "Uniform Decomposition and Positive-Gradient Differential Evolution for Multi-Objective Design of Wind Turbine Blade," Energies, MDPI, vol. 11(5), pages 1-19, May.
  34. Yamani Douzi Sorkhabi, Sami & Romero, David A. & Beck, J. Christopher & Amon, Cristina H., 2018. "Constrained multi-objective wind farm layout optimization: Novel constraint handling approach based on constraint programming," Renewable Energy, Elsevier, vol. 126(C), pages 341-353.
  35. Yin, Peng-Yeng & Wu, Tsai-Hung & Hsu, Ping-Yi, 2017. "Simulation based risk management for multi-objective optimal wind turbine placement using MOEA/D," Energy, Elsevier, vol. 141(C), pages 579-597.
IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.