IDEAS home Printed from https://ideas.repec.org/r/eee/energy/v28y2003i14p1461-1477.html
   My bibliography  Save this item

Review of ways to transport natural gas energy from countries which do not need the gas for domestic use

Citations

Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
as


Cited by:

  1. Sun, Qibei & Kang, Yong Tae, 2016. "Review on CO2 hydrate formation/dissociation and its cold energy application," Renewable and Sustainable Energy Reviews, Elsevier, vol. 62(C), pages 478-494.
  2. Sun, Jiasen & Li, Guo & Wang, Zhaohua, 2018. "Optimizing China’s energy consumption structure under energy and carbon constraints," Structural Change and Economic Dynamics, Elsevier, vol. 47(C), pages 57-72.
  3. Gomes Relva, Stefania & Oliveira da Silva, Vinícius & Peyerl, Drielli & Veiga Gimenes, André Luiz & Molares Udaeta, Miguel Edgar, 2020. "Regulating the electro-energetic use of natural gas by gas-to-wire offshore technology: Case study from Brazil," Utilities Policy, Elsevier, vol. 66(C).
  4. Kim, Juwon & Seo, Youngkyun & Chang, Daejun, 2016. "Economic evaluation of a new small-scale LNG supply chain using liquid nitrogen for natural-gas liquefaction," Applied Energy, Elsevier, vol. 182(C), pages 154-163.
  5. Muhammad Sajid & Farhan Ahmed & Shafique Ahmed & Aadil Panhwar, 2018. "Viability of Liquefied Natural Gas (LNG) in Pakistan," International Journal of Energy Economics and Policy, Econjournals, vol. 8(5), pages 146-154.
  6. Raghoo, Pravesh & Surroop, Dinesh & Wolf, Franziska, 2017. "Natural gas to improve energy security in Small Island Developing States: A techno-economic analysis," Development Engineering, Elsevier, vol. 2(C), pages 92-98.
  7. Dong, Hongsheng & Wang, Jiaqi & Xie, Zhuoxue & Wang, Bin & Zhang, Lunxiang & Shi, Quan, 2021. "Potential applications based on the formation and dissociation of gas hydrates," Renewable and Sustainable Energy Reviews, Elsevier, vol. 143(C).
  8. Zarei, Javad & Amin-Naseri, Mohammad Reza, 2019. "An integrated optimization model for natural gas supply chain," Energy, Elsevier, vol. 185(C), pages 1114-1130.
  9. Sanya Du & Yixin Qu & Hui Li & Xiaohui Yu, 2022. "Methane Adsorption Properties in Biomaterials: A Possible Route to Gas Storage and Transportation," Energies, MDPI, vol. 15(12), pages 1-14, June.
  10. Castelo Branco, David A. & Szklo, Alexandre S. & Schaeffer, Roberto, 2010. "Co2e emissions abatement costs of reducing natural gas flaring in Brazil by investing in offshore GTL plants producing premium diesel," Energy, Elsevier, vol. 35(1), pages 158-167.
  11. Farrokhifar, Meisam & Nie, Yinghui & Pozo, David, 2020. "Energy systems planning: A survey on models for integrated power and natural gas networks coordination," Applied Energy, Elsevier, vol. 262(C).
  12. Girma T. Chala & Abd Rashid Abd Aziz & Ftwi Y. Hagos, 2018. "Natural Gas Engine Technologies: Challenges and Energy Sustainability Issue," Energies, MDPI, vol. 11(11), pages 1-44, October.
  13. Zhu, Haiyan & Liu, Qinqyou & Deng, Jingen & Wang, Guorong & Xiao, Xiaohua & Jiang, Zhenglu & Zhang, Deyu, 2011. "Pressure and temperature preservation techniques for gas-hydrate-bearing sediments sampling," Energy, Elsevier, vol. 36(7), pages 4542-4551.
  14. da Silva, Vinícius Oliveira & Relva, Stefania Gomes & Mondragon, Marcella & Mendes, André Bergsten & Nishimoto, Kazuo & Peyerl, Drielli, 2023. "Building Options for the Brazilian Pre-salt: A technical-economic and infrastructure analysis of offshore integration between energy generation and natural gas exploration," Resources Policy, Elsevier, vol. 81(C).
  15. Hamidzadeh, Zeinab & Sattari, Sourena & Soltanieh, Mohammad & Vatani, Ali, 2020. "Development of a multi-objective decision-making model to recover flare gases in a multi flare gases zone," Energy, Elsevier, vol. 203(C).
  16. Yanhu, Mu & Guoyu, Li & Wei, Ma & Zhengmin, Song & Zhiwei, Zhou & Wang, Fei, 2020. "Rapid permafrost thaw induced by heat loss from a buried warm-oil pipeline and a new mitigation measure combining seasonal air-cooled embankment and pipe insulation," Energy, Elsevier, vol. 203(C).
  17. Stipe Španja & Aleksandra Krajnović & Jurica Bosna, 2017. "Competitiveness And Business Strategies Of Shipping Companies," Poslovna izvrsnost/Business Excellence, Faculty of Economics and Business, University of Zagreb, vol. 11(1), pages 123-137.
  18. Takeya, Satoshi & Mimachi, Hiroko & Murayama, Tetsuro, 2018. "Methane storage in water frameworks: Self-preservation of methane hydrate pellets formed from NaCl solutions," Applied Energy, Elsevier, vol. 230(C), pages 86-93.
  19. Guo, Hao & Tang, Qixiong & Gong, Maoqiong & Cheng, Kuiwei, 2018. "Optimization of a novel liquefaction process based on Joule–Thomson cycle utilizing high-pressure natural gas exergy by genetic algorithm," Energy, Elsevier, vol. 151(C), pages 696-706.
  20. Khalilpour, Rajab & Karimi, I.A., 2012. "Evaluation of utilization alternatives for stranded natural gas," Energy, Elsevier, vol. 40(1), pages 317-328.
  21. Szoplik, Jolanta, 2016. "Improving the natural gas transporting based on the steady state simulation results," Energy, Elsevier, vol. 109(C), pages 105-116.
  22. Saghi Raeisdanaei & Vahid Pirouzfar & Chia-Hung Su, 2022. "Technical and economic assessment of processes for the LNG production in cycles with expander and refrigeration," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 24(11), pages 13407-13425, November.
  23. Rasool, Muhammad & Khalilpour, Kaveh & Rafiee, Ahmad & Karimi, Iftekhar & Madlener, Reinhard, 2021. "Evaluation of Alternative Power-to-Chemical Pathways for Renewable Energy Exports," FCN Working Papers 4/2021, E.ON Energy Research Center, Future Energy Consumer Needs and Behavior (FCN), revised Apr 2023.
  24. Ong, Chong Wei & Chen, Cheng-Liang, 2019. "Technical and economic evaluation of seawater freezing desalination using liquefied natural gas," Energy, Elsevier, vol. 181(C), pages 429-439.
  25. Mofid, Hossein & Jazayeri-Rad, Hooshang & Shahbazian, Mehdi & Fetanat, Abdolvahhab, 2019. "Enhancing the performance of a parallel nitrogen expansion liquefaction process (NELP) using the multi-objective particle swarm optimization (MOPSO) algorithm," Energy, Elsevier, vol. 172(C), pages 286-303.
  26. Saad A. Al-Sobhi & Ali Elkamel & Fatih S. Erenay & Munawar A. Shaik, 2018. "Simulation-Optimization Framework for Synthesis and Design of Natural Gas Downstream Utilization Networks," Energies, MDPI, vol. 11(2), pages 1-19, February.
  27. Brito, T.L.F. & Galvão, C. & Fonseca, A.F. & Costa, H.K.M. & Moutinho dos Santos, E., 2022. "A review of gas-to-wire (GtW) projects worldwide: State-of-art and developments," Energy Policy, Elsevier, vol. 163(C).
  28. Muhammad Khan & Pramod Warrier & Cornelis Peters & Carolyn Koh, 2022. "Hydrate-Based Separation for Industrial Gas Mixtures," Energies, MDPI, vol. 15(3), pages 1-15, January.
  29. Larraín, Teresita & Escobar, Rodrigo, 2012. "Net energy analysis for concentrated solar power plants in northern Chile," Renewable Energy, Elsevier, vol. 41(C), pages 123-133.
  30. Egging, Ruud & Holz, Franziska & Gabriel, Steven A., 2010. "The World Gas Model," Energy, Elsevier, vol. 35(10), pages 4016-4029.
  31. Xu, Jiuping & Tang, Min & Liu, Tingting & Fan, Lurong, 2024. "Technological paradigm-based development strategy towards natural gas hydrate technology," Energy, Elsevier, vol. 289(C).
  32. Cho, Jaeyoung & Lim, Gino J. & Kim, Seon Jin & Biobaku, Taofeek, 2018. "Liquefied natural gas inventory routing problem under uncertain weather conditions," International Journal of Production Economics, Elsevier, vol. 204(C), pages 18-29.
  33. Ohfuka, Yugo & Ohmura, Ryo, 2016. "Theoretical performance analysis of hydrate-based heat engine system suitable for low-temperature driven power generation," Energy, Elsevier, vol. 101(C), pages 27-33.
  34. Cao, Yan & Mohammadian, Mehrnoush & Pirouzfar, Vahid & Su, Chia-Hung & Khan, Afrasyab, 2021. "Break Even Point analysis of liquefied natural gas process and optimization of its refrigeration cycles with technical and economic considerations," Energy, Elsevier, vol. 237(C).
IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.