IDEAS home Printed from https://ideas.repec.org/r/eee/agiwat/v196y2018icp99-113.html
   My bibliography  Save this item

Performance of AquaCrop model for cotton growth simulation under film-mulched drip irrigation in southern Xinjiang, China

Citations

Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
as


Cited by:

  1. Alex Zizinga & Jackson Gilbert Majaliwa Mwanjalolo & Britta Tietjen & Bobe Bedadi & Ramon Amaro de Sales & Dennis Beesigamukama, 2022. "Simulating Maize Productivity under Selected Climate Smart Agriculture Practices Using AquaCrop Model in a Sub-humid Environment," Sustainability, MDPI, vol. 14(4), pages 1-17, February.
  2. Hongbo Wang & Hui Cao & Fuchang Jiang & Xingpeng Wang & Yang Gao, 2022. "Analysis of Soil Moisture, Temperature, and Salinity in Cotton Field under Non-Mulched Drip Irrigation in South Xinjiang," Agriculture, MDPI, vol. 12(10), pages 1-15, October.
  3. Li, Yunfeng & Yu, Qihua & Ning, Huifeng & Gao, Yang & Sun, Jingsheng, 2023. "Simulation of soil water, heat, and salt adsorptive transport under film mulched drip irrigation in an arid saline-alkali area using HYDRUS-2D," Agricultural Water Management, Elsevier, vol. 290(C).
  4. Li, Meng & Du, Yingji & Zhang, Fucang & Bai, Yungang & Fan, Junliang & Zhang, Jianghui & Chen, Shaoming, 2019. "Simulation of cotton growth and soil water content under film-mulched drip irrigation using modified CSM-CROPGRO-cotton model," Agricultural Water Management, Elsevier, vol. 218(C), pages 124-138.
  5. Yunfeng Li & Quanqing Feng & Dongwei Li & Mingfa Li & Huifeng Ning & Qisheng Han & Abdoul Kader Mounkaila Hamani & Yang Gao & Jingsheng Sun, 2022. "Water-Salt Thresholds of Cotton ( Gossypium hirsutum L.) under Film Drip Irrigation in Arid Saline-Alkali Area," Agriculture, MDPI, vol. 12(11), pages 1-21, October.
  6. Wang, Haidong & Cheng, Minghui & Liao, Zhenqi & Guo, Jinjin & Zhang, Fucang & Fan, Junliang & Feng, Hao & Yang, Qiliang & Wu, Lifeng & Wang, Xiukang, 2023. "Performance evaluation of AquaCrop and DSSAT-SUBSTOR-Potato models in simulating potato growth, yield and water productivity under various drip fertigation regimes," Agricultural Water Management, Elsevier, vol. 276(C).
  7. Zhu, Hongyan & Zheng, Bingyan & Nie, Weibo & Fei, Liangjun & Shan, Yuyang & Li, Ge & Liang, Fei, 2024. "Optimization of maize irrigation strategy in Xinjiang, China by AquaCrop based on a four-year study," Agricultural Water Management, Elsevier, vol. 297(C).
  8. Ahmadzadeh Araji, Hamidreza & Wayayok, Aimrun & Massah Bavani, Alireza & Amiri, Ebrahim & Abdullah, Ahmad Fikri & Daneshian, Jahanfar & Teh, C.B.S., 2018. "Impacts of climate change on soybean production under different treatments of field experiments considering the uncertainty of general circulation models," Agricultural Water Management, Elsevier, vol. 205(C), pages 63-71.
  9. Zhou, Beibei & Liang, Chaofan & Chen, Xiaopeng & Ye, Sitan & Peng, Yao & Yang, Lu & Duan, Manli & Wang, Xingpeng, 2022. "Magnetically-treated brackish water affects soil water-salt distribution and the growth of cotton with film mulch drip irrigation in Xinjiang, China," Agricultural Water Management, Elsevier, vol. 263(C).
  10. Delorit, Justin D. & Parker, Dominic P. & Block, Paul J., 2019. "An agro-economic approach to framing perennial farm-scale water resources demand management for water rights markets," Agricultural Water Management, Elsevier, vol. 218(C), pages 68-81.
  11. Li, Na & Li, Yi & Yang, Qiliang & Biswas, Asim & Dong, Hezhong, 2024. "Simulating climate change impacts on cotton using AquaCrop model in China," Agricultural Systems, Elsevier, vol. 216(C).
  12. Yalong Du & Qiuping Fu & Pengrui Ai & Yingjie Ma & Yang Pan, 2024. "Modeling Comprehensive Deficit Irrigation Strategies for Drip-Irrigated Cotton Using AquaCrop," Agriculture, MDPI, vol. 14(8), pages 1-24, August.
  13. Cheng, Minghui & Wang, Haidong & Fan, Junliang & Xiang, Youzhen & Liu, Xiaoqiang & Liao, Zhenqi & Abdelghany, Ahmed Elsayed & Zhang, Fucang & Li, Zhijun, 2022. "Evaluation of AquaCrop model for greenhouse cherry tomato with plastic film mulch under various water and nitrogen supplies," Agricultural Water Management, Elsevier, vol. 274(C).
  14. Chu, Xiaosheng & Flerchinger, Gerald N. & Ma, Liwang & Fang, Quanxiao & Malone, Robert W. & Yu, Qiang & He, Jianqiang & Wang, Naijiang & Feng, Hao & Zou, Yufeng, 2022. "Development of RZ-SHAW for simulating plastic mulch effects on soil water, soil temperature, and surface energy balance in a maize field," Agricultural Water Management, Elsevier, vol. 269(C).
  15. Yu, Qihua & Kang, Shaozhong & Hu, Shunjun & Zhang, Lu & Zhang, Xiaotao, 2021. "Modeling soil water-salt dynamics and crop response under severely saline condition using WAVES: Searching for a target irrigation volume for saline water irrigation," Agricultural Water Management, Elsevier, vol. 256(C).
  16. Xiaoping Chen & Shaoyuan Feng & Zhiming Qi & Matthew W. Sima & Fanjiang Zeng & Lanhai Li & Haomiao Cheng & Hao Wu, 2022. "Optimizing Irrigation Strategies to Improve Water Use Efficiency of Cotton in Northwest China Using RZWQM2," Agriculture, MDPI, vol. 12(3), pages 1-15, March.
  17. Feng, Dingrui & Li, Guangyong & Wang, Dan & Wulazibieke, Mierguli & Cai, Mingkun & Kang, Jing & Yuan, Zicheng & Xu, Houcheng, 2022. "Evaluation of AquaCrop model performance under mulched drip irrigation for maize in Northeast China," Agricultural Water Management, Elsevier, vol. 261(C).
  18. Che, Zheng & Wang, Jun & Li, Jiusheng, 2021. "Effects of water quality, irrigation amount and nitrogen applied on soil salinity and cotton production under mulched drip irrigation in arid Northwest China," Agricultural Water Management, Elsevier, vol. 247(C).
  19. Shi, Jianchu & Wu, Xun & Zhang, Mo & Wang, Xiaoyu & Zuo, Qiang & Wu, Xiaoguang & Zhang, Hongfei & Ben-Gal, Alon, 2021. "Numerically scheduling plant water deficit index-based smart irrigation to optimize crop yield and water use efficiency," Agricultural Water Management, Elsevier, vol. 248(C).
  20. Zhou, Beibei & Yang, Lu & Chen, Xiaopeng & Ye, Sitan & Peng, Yao & Liang, Chaofan, 2021. "Effect of magnetic water irrigation on the improvement of salinized soil and cotton growth in Xinjiang," Agricultural Water Management, Elsevier, vol. 248(C).
  21. Chen, Xiaoping & Qi, Zhiming & Gui, Dongwei & Sima, Matthew W. & Zeng, Fanjiang & Li, Lanhai & Li, Xiangyi & Gu, Zhe, 2020. "Evaluation of a new irrigation decision support system in improving cotton yield and water productivity in an arid climate," Agricultural Water Management, Elsevier, vol. 234(C).
  22. Moghbel, Farzam & Fazel, Forough & Aguilar, Jonathan & Mosaedi, Abolfazl & Lollato, Romulo P., 2024. "Long-term investigation of the irrigation intervals and supplementary irrigation strategies effects on winter wheat in the U.S. Central High Plains based on a combination of crop modeling and field st," Agricultural Water Management, Elsevier, vol. 304(C).
  23. Zhang, Junpeng & Li, Kejiang & Gao, Yang & Feng, Di & Zheng, Chunlian & Cao, Caiyun & Sun, Jingsheng & Dang, Hongkai & Hamani, Abdoul Kader Mounkaila, 2022. "Evaluation of saline water irrigation on cotton growth and yield using the AquaCrop crop simulation model," Agricultural Water Management, Elsevier, vol. 261(C).
  24. Yu, Qihua & Kang, Shaozhong & Zhang, Lu & Hu, Shunjun & Li, Yunfeng & Parsons, David, 2023. "Incorporating new functions into the WAVES model, to better simulate cotton production under film mulching and severe salinity," Agricultural Water Management, Elsevier, vol. 288(C).
  25. Guo, Leilei & Wang, Zaimin & Šimůnek, Jirka & He, Yujiang & Muhamma, Rizwan, 2023. "Optimizing the strategies of mulched brackish drip irrigation under a shallow water table in Xinjiang, China, using HYDRUS-3D," Agricultural Water Management, Elsevier, vol. 283(C).
  26. Zhang, Ting & Zuo, Qiang & Ma, Ning & Shi, Jianchu & Fan, Yuchuan & Wu, Xun & Wang, Lichun & Xue, Xuzhang & Ben-Gal, Alon, 2023. "Optimizing relative root-zone water depletion thresholds to maximize yield and water productivity of winter wheat using AquaCrop," Agricultural Water Management, Elsevier, vol. 286(C).
IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.