IDEAS home Printed from https://ideas.repec.org/r/aen/journl/1999v20-02-a03.html
   My bibliography  Save this item

Emissions of SO2, NOx and CO2 in Transition Economies: Emission Inventories and Divisia Index Analysis

Citations

Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
as


Cited by:

  1. M'raihi, Rafaa & Mraihi, Talel & Harizi, Riadh & Taoufik Bouzidi, Mohamed, 2015. "Carbon emissions growth and road freight: Analysis of the influencing factors in Tunisia," Transport Policy, Elsevier, vol. 42(C), pages 121-129.
  2. Åsa Löfgren & Adrian Muller, 2010. "Swedish CO 2 Emissions 1993–2006: An Application of Decomposition Analysis and Some Methodological Insights," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 47(2), pages 221-239, October.
  3. Xu, X.Y. & Ang, B.W., 2013. "Index decomposition analysis applied to CO2 emission studies," Ecological Economics, Elsevier, vol. 93(C), pages 313-329.
  4. Lin, Sue J. & Lu, I.J. & Lewis, Charles, 2006. "Identifying key factors and strategies for reducing industrial CO2 emissions from a non-Kyoto protocol member's (Taiwan) perspective," Energy Policy, Elsevier, vol. 34(13), pages 1499-1507, September.
  5. Andreoni, V. & Galmarini, S., 2012. "Decoupling economic growth from carbon dioxide emissions: A decomposition analysis of Italian energy consumption," Energy, Elsevier, vol. 44(1), pages 682-691.
  6. Min Jiang & Euijune Kim & Youngjin Woo, 2020. "The Relationship between Economic Growth and Air Pollution—A Regional Comparison between China and South Korea," IJERPH, MDPI, vol. 17(8), pages 1-20, April.
  7. Stern, David I., 2002. "Explaining changes in global sulfur emissions: an econometric decomposition approach," Ecological Economics, Elsevier, vol. 42(1-2), pages 201-220, August.
  8. Li, Man, 2010. "Decomposing the change of CO2 emissions in China: A distance function approach," Ecological Economics, Elsevier, vol. 70(1), pages 77-85, November.
  9. Ehsan Rasoulinezhad & Farhad Taghizadeh-Hesary, 2017. "A new evidence on the CIS?s environmental pollution-macroeoconmic variables relationship," ECONOMICS AND POLICY OF ENERGY AND THE ENVIRONMENT, FrancoAngeli Editore, vol. 2017(1-2), pages 273-293.
  10. Pani, Ratnakar & Mukhopadhyay, Ujjaini, 2011. "Variance analysis of global CO2 emission – A management accounting approach for decomposition study," Energy, Elsevier, vol. 36(1), pages 486-499.
  11. Peter Rafaj & Markus Amann & José Siri & Henning Wuester, 2014. "Changes in European greenhouse gas and air pollutant emissions 1960–2010: decomposition of determining factors," Climatic Change, Springer, vol. 124(3), pages 477-504, June.
  12. Brian Chi-ang Lin & Siqi Zheng & Maximilian Auffhammer & Weizeng Sun & Jianfeng Wu & Siqi Zheng, 2016. "The Decomposition And Dynamics Of Industrial Carbon Dioxide Emissions For 287 Chinese Cities In 1998–2009," Journal of Economic Surveys, Wiley Blackwell, vol. 30(3), pages 460-481, July.
  13. Tokunaga, Masahiro, 2020. "Regime Change and Environmental Reform: A Systematic Review of Research on Central and Eastern Europe," CEI Working Paper Series 2019-10, Center for Economic Institutions, Institute of Economic Research, Hitotsubashi University.
  14. Pasurka, Carl Jr., 2006. "Decomposing electric power plant emissions within a joint production framework," Energy Economics, Elsevier, vol. 28(1), pages 26-43, January.
  15. Yi, Hongtao, 2015. "Clean-energy policies and electricity sector carbon emissions in the U.S. states," Utilities Policy, Elsevier, vol. 34(C), pages 19-29.
  16. Ang, B.W. & Liu, F.L., 2001. "A new energy decomposition method: perfect in decomposition and consistent in aggregation," Energy, Elsevier, vol. 26(6), pages 537-548.
  17. Nag, Barnali & Parikh, Jyoti K., 2005. "Carbon emission coefficient of power consumption in India: baseline determination from the demand side," Energy Policy, Elsevier, vol. 33(6), pages 777-786, April.
  18. Ščasný, M. & Ang, B.W. & Rečka, L., 2021. "Decomposition analysis of air pollutants during the transition and post-transition periods in the Czech Republic," Renewable and Sustainable Energy Reviews, Elsevier, vol. 145(C).
  19. Ang, B. W., 1999. "Is the energy intensity a less useful indicator than the carbon factor in the study of climate change?," Energy Policy, Elsevier, vol. 27(15), pages 943-946, December.
  20. Patiño, Lourdes Isabel & Alcántara, Vicent & Padilla, Emilio, 2021. "Driving forces of CO2 emissions and energy intensity in Colombia," Energy Policy, Elsevier, vol. 151(C).
  21. Zheng, Jiali & Feng, Gengzhong & Ren, Zhuanzhuan & Qi, Nengxi & Coffman, D'Maris & Zhou, Yunlai & Wang, Shouyang, 2022. "China's energy consumption and economic activity at the regional level," Energy, Elsevier, vol. 259(C).
  22. Stern, David I., 2004. "The Rise and Fall of the Environmental Kuznets Curve," World Development, Elsevier, vol. 32(8), pages 1419-1439, August.
  23. Kahn Matthew E, 2003. "New Evidence on Eastern Europe's Pollution Progress," The B.E. Journal of Economic Analysis & Policy, De Gruyter, vol. 3(1), pages 1-18, April.
  24. Cornillie, Jan & Fankhauser, Samuel, 2004. "The energy intensity of transition countries," Energy Economics, Elsevier, vol. 26(3), pages 283-295, May.
  25. Ang, B.W. & Zhang, F.Q., 2000. "A survey of index decomposition analysis in energy and environmental studies," Energy, Elsevier, vol. 25(12), pages 1149-1176.
  26. Viguier, Laurent L. & Babiker, Mustafa H. & Reilly, John M., 2003. "The costs of the Kyoto Protocol in the European Union," Energy Policy, Elsevier, vol. 31(5), pages 459-481, April.
IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.