IDEAS home Printed from https://ideas.repec.org/f/psu360.html
   My authors  Follow this author

孙佳婧
(Jiajing Sun)

Personal Details

First Name:Jiajing
Middle Name:
Last Name:Sun
Suffix:
RePEc Short-ID:psu360
[This author has chosen not to make the email address public]
School of Management University of Chinese Academy of Sciences Room 223 Building 7, No. 80 Zhongguancun East Road, Haidian District, Beijing, P.R.C. Zip Code: 10

Affiliation

School of Management
Chinese Academy of Sciences

Beijing, China
http://www.mscas.ac.cn/
RePEc:edi:mscascn (more details at EDIRC)

Research output

as
Jump to: Articles

Articles

  1. Li, Ziran & Sun, Jiajing & Wang, Shouyang, 2013. "An information diffusion-based model of oil futures price," Energy Economics, Elsevier, vol. 36(C), pages 518-525.
  2. Jiajing Sun & Brendan P. McCabe, 2013. "Score statistics for testing serial dependence in count data," Journal of Time Series Analysis, Wiley Blackwell, vol. 34(3), pages 315-329, May.

Citations

Many of the citations below have been collected in an experimental project, CitEc, where a more detailed citation analysis can be found. These are citations from works listed in RePEc that could be analyzed mechanically. So far, only a minority of all works could be analyzed. See under "Corrections" how you can help improve the citation analysis.

Articles

  1. Li, Ziran & Sun, Jiajing & Wang, Shouyang, 2013. "An information diffusion-based model of oil futures price," Energy Economics, Elsevier, vol. 36(C), pages 518-525.

    Cited by:

    1. Ding, Yishan, 2018. "A novel decompose-ensemble methodology with AIC-ANN approach for crude oil forecasting," Energy, Elsevier, vol. 154(C), pages 328-336.
    2. Gong, Xu & Wen, Fenghua & Xia, X.H. & Huang, Jianbai & Pan, Bin, 2017. "Investigating the risk-return trade-off for crude oil futures using high-frequency data," Applied Energy, Elsevier, vol. 196(C), pages 152-161.
    3. Ayoub, Mahmoud & Qadan, Mahmoud, 2024. "Ambiguity and risk in the oil market," Economic Modelling, Elsevier, vol. 132(C).
    4. James Ming Chen & Mobeen Ur Rehman, 2021. "A Pattern New in Every Moment: The Temporal Clustering of Markets for Crude Oil, Refined Fuels, and Other Commodities," Energies, MDPI, vol. 14(19), pages 1-58, September.
    5. Nian, Fuzhong & Liu, Jinshuo, 2021. "Feedback driven message spreading on network," Chaos, Solitons & Fractals, Elsevier, vol. 149(C).
    6. Xie Haibin & Zhou Mo & Hu Yi & Yu Mei, 2014. "Forecasting the Crude Oil Price with Extreme Values," Journal of Systems Science and Information, De Gruyter, vol. 2(3), pages 193-205, June.

  2. Jiajing Sun & Brendan P. McCabe, 2013. "Score statistics for testing serial dependence in count data," Journal of Time Series Analysis, Wiley Blackwell, vol. 34(3), pages 315-329, May.

    Cited by:

    1. Pedro H. C. Sant’Anna, 2017. "Testing for Uncorrelated Residuals in Dynamic Count Models With an Application to Corporate Bankruptcy," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 35(3), pages 349-358, July.
    2. Boris Aleksandrov & Christian H. Weiß, 2020. "Testing the dispersion structure of count time series using Pearson residuals," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 104(3), pages 325-361, September.
    3. Christian Weiß, 2015. "A Poisson INAR(1) model with serially dependent innovations," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 78(7), pages 829-851, October.
    4. Mirko Armillotta & Paolo Gorgi, 2023. "Pseudo-variance quasi-maximum likelihood estimation of semi-parametric time series models," Tinbergen Institute Discussion Papers 23-054/III, Tinbergen Institute.
    5. Lucio Palazzo & Riccardo Ievoli, 2022. "A Semiparametric Approach to Test for the Presence of INAR: Simulations and Empirical Applications," Mathematics, MDPI, vol. 10(14), pages 1-18, July.
    6. Luisa Bisaglia & Margherita Gerolimetto, 2019. "Model-based INAR bootstrap for forecasting INAR(p) models," Computational Statistics, Springer, vol. 34(4), pages 1815-1848, December.

More information

Research fields, statistics, top rankings, if available.

Statistics

Access and download statistics for all items

Co-authorship network on CollEc

Corrections

All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. For general information on how to correct material on RePEc, see these instructions.

To update listings or check citations waiting for approval, Jiajing Sun
(Jiajing Sun) should log into the RePEc Author Service.

To make corrections to the bibliographic information of a particular item, find the technical contact on the abstract page of that item. There, details are also given on how to add or correct references and citations.

To link different versions of the same work, where versions have a different title, use this form. Note that if the versions have a very similar title and are in the author's profile, the links will usually be created automatically.

Please note that most corrections can take a couple of weeks to filter through the various RePEc services.

IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.