IDEAS home Printed from https://ideas.repec.org/f/psh900.html
   My authors  Follow this author

Mingyue Sheng

Personal Details

First Name:Mingyue
Middle Name:
Last Name:Sheng
Suffix:
RePEc Short-ID:psh900

Affiliation

Energy Centre
Business School
University of Auckland

Auckland, New Zealand
http://www.business.auckland.ac.nz/en/about/our-research/bs-research-institutes-and-centres/energy-centre.html
RePEc:edi:ecaucnz (more details at EDIRC)

Research output

as
Jump to: Articles

Articles

  1. Yi, Ming & Wang, Yiqian & Sheng, Mingyue & Sharp, Basil & Zhang, Yao, 2020. "Effects of heterogeneous technological progress on haze pollution: Evidence from China," Ecological Economics, Elsevier, vol. 169(C).
  2. Sheng, Mingyue & Sharp, Basil, 2019. "Aggregate road passenger travel demand in New Zealand: A seemingly unrelated regression approach," Transportation Research Part A: Policy and Practice, Elsevier, vol. 124(C), pages 55-68.
  3. Nan Jiang & Basil Sharp & Mingyue Sheng, 2009. "New Zealand's emissions trading scheme," New Zealand Economic Papers, Taylor & Francis Journals, vol. 43(1), pages 69-79.

Citations

Many of the citations below have been collected in an experimental project, CitEc, where a more detailed citation analysis can be found. These are citations from works listed in RePEc that could be analyzed mechanically. So far, only a minority of all works could be analyzed. See under "Corrections" how you can help improve the citation analysis.

Articles

  1. Yi, Ming & Wang, Yiqian & Sheng, Mingyue & Sharp, Basil & Zhang, Yao, 2020. "Effects of heterogeneous technological progress on haze pollution: Evidence from China," Ecological Economics, Elsevier, vol. 169(C).

    Cited by:

    1. Yang, Zhenbing & Shi, Qingquan & Lv, Xiangqiu & Shi, Qi, 2022. "Heterogeneous low-carbon targets and energy structure optimization: Does stricter carbon regulation really matter?," Structural Change and Economic Dynamics, Elsevier, vol. 60(C), pages 329-343.
    2. Dong, Kangyin & Shahbaz, Muhammad & Zhao, Jun, 2022. "How do pollution fees affect environmental quality in China?," Energy Policy, Elsevier, vol. 160(C).
    3. Chenavaz, Régis Y. & Dimitrov, Stanko & Figge, Frank, 2021. "When does eco-efficiency rebound or backfire? An analytical model," European Journal of Operational Research, Elsevier, vol. 290(2), pages 687-700.
    4. Zhong, Mei-Rui & Xiao, Shun-Li & Zou, Han & Zhang, Yi-Jun & Song, Yi, 2021. "The effects of technical change on carbon intensity in China’s non-ferrous metal industry," Resources Policy, Elsevier, vol. 73(C).
    5. Wang, Hongli & Guo, Jinguang, 2024. "New way out of efficiency-equity dilemma: Digital technology empowerment for local government environmental governance," Technological Forecasting and Social Change, Elsevier, vol. 200(C).
    6. Yuan Zhao & Tian Zhang & Ting Wu & Shujing Xu & Shuwang Yang, 2021. "Effects of Technological Progress from Different Sources on Haze Pollution in China," Sustainability, MDPI, vol. 13(5), pages 1-18, March.
    7. Zhao, Qian & Ding, Longfei & Pirtea, Marilen Gabriel & Vǎtavu, Sorana, 2023. "Does technological innovation bring better air quality?," Economic Analysis and Policy, Elsevier, vol. 80(C), pages 978-990.
    8. Dianshuang Wang & Hongyun Huang & Xin Zhao & Fang Fang, 2023. "Green technological progress, agricultural modernization, and wage inequality: Lessons from China," Review of Development Economics, Wiley Blackwell, vol. 27(3), pages 1673-1698, August.
    9. Ning Xu & Fan Zhang & Xin Xuan, 2021. "Impacts of Industrial Restructuring and Technological Progress on PM 2.5 Pollution: Evidence from Prefecture-Level Cities in China," IJERPH, MDPI, vol. 18(10), pages 1-17, May.
    10. Wenqi Zhao & Moau Yong Toh, 2023. "Impact of Innovative City Pilot Policy on Industrial Structure Upgrading in China," Sustainability, MDPI, vol. 15(9), pages 1-22, April.
    11. Jia, Zhijie & Wu, Rongxin & Liu, Yu & Wen, Shiyan & Lin, Boqiang, 2024. "Can carbon tariffs based on domestic embedded carbon emissions reduce more carbon leakages?," Ecological Economics, Elsevier, vol. 220(C).
    12. Jun Shao & Lianghu Wang, 2024. "The role of different paths of technological progress in improving China's energy efficiency," Energy & Environment, , vol. 35(4), pages 2008-2030, June.
    13. Huang, Xiaoling & Tian, Peng, 2023. "Polluting thy neighbor or benefiting thy neighbor: Effects of the clean energy development on haze pollution in China," Energy, Elsevier, vol. 268(C).
    14. Han, Yonghui & Zhang, Fan & Huang, Liangxiong & Peng, Keming & Wang, Xianbin, 2021. "Does industrial upgrading promote eco-efficiency? ─A panel space estimation based on Chinese evidence," Energy Policy, Elsevier, vol. 154(C).
    15. Qu, Weihua & Qu, Guohua & Zhang, Xindong & Robert, Dixon, 2021. "The impact of public participation in environmental behavior on haze pollution and public health in China," Economic Modelling, Elsevier, vol. 98(C), pages 319-335.
    16. Shahbaz, Muhammad & Raghutla, Chandrashekar & Chittedi, Krishna Reddy & Jiao, Zhilun & Vo, Xuan Vinh, 2020. "The Effect of Renewable Energy Consumption on Economic Growth: Evidence from the Renewable Energy Country Attractive Index," MPRA Paper 101168, University Library of Munich, Germany, revised 15 Jun 2020.
    17. Hongge Zhu & Zhenhuan Chen & Shaopeng Zhang & Wencheng Zhao, 2022. "The Role of Government Innovation Support in the Process of Urban Green Sustainable Development: A Spatial Difference-in-Difference Analysis Based on China’s Innovative City Pilot Policy," IJERPH, MDPI, vol. 19(13), pages 1-19, June.
    18. Zhao, Chuanmin & Xie, Rui & Ma, Chunbo & Han, Feng, 2022. "Understanding the haze pollution effects of China's development zone program," Energy Economics, Elsevier, vol. 111(C).
    19. Huaide Wen & Jun Dai, 2021. "The Change of Sources of Growth and Sustainable Development in China: Based on the Extended EKC Explanation," Sustainability, MDPI, vol. 13(5), pages 1-19, March.
    20. Jing Wang & Yubing Xu, 2022. "How Does Digitalization Affect Haze Pollution? The Mediating Role of Energy Consumption," IJERPH, MDPI, vol. 19(18), pages 1-15, September.
    21. Liu, Yazhou & Ren, Tiantian & Liu, Lijun & Ni, Jinlan & Yin, Yingkai, 2023. "Heterogeneous industrial agglomeration, technological innovation and haze pollution," China Economic Review, Elsevier, vol. 77(C).
    22. Ai, Hongshan & Wang, Mengyuan & Zhang, Yue-Jun & Zhu, Tian-Tian, 2022. "How does air pollution affect urban innovation capability? Evidence from 281 cities in China," Structural Change and Economic Dynamics, Elsevier, vol. 61(C), pages 166-178.
    23. Xu, Shuhua & Sun, Chuanwang & Wei, Haoyu & Hou, Xinshuo, 2023. "Road construction and air pollution: Analysis of road area ratio in China," Applied Energy, Elsevier, vol. 351(C).
    24. Li, Zhen & Wu, Baijun & Wang, Danyang & Tang, Maogang, 2022. "Government mandatory energy-biased technological progress and enterprises' environmental performance: Evidence from a quasi-natural experiment of cleaner production standards in China," Energy Policy, Elsevier, vol. 162(C).
    25. Omar Alkasasbeh & Ohoud Khasawneh & Amro Alzghoul, 2023. "The Nexus between Renewable Energy Consumption and Economic Growth: Empirical Evidence from Jordan," International Journal of Energy Economics and Policy, Econjournals, vol. 13(2), pages 194-199, March.
    26. Wenqin Gong & Yu Kong, 2022. "Nonlinear Influence of Chinese Real Estate Development on Environmental Pollution: New Evidence from Spatial Econometric Model," IJERPH, MDPI, vol. 19(1), pages 1-22, January.
    27. Chen, Lei & Li, Ke & Chen, Shuying & Wang, Xiaofei & Tang, Liwei, 2021. "Industrial activity, energy structure, and environmental pollution in China," Energy Economics, Elsevier, vol. 104(C).
    28. Shuhong Wang & Yuqing He & Hanxue Chen, 2023. "Can raising trade barriers curb industrial pollution emissions?," Energy & Environment, , vol. 34(7), pages 2454-2477, November.
    29. Zhao, Jun & Dong, Kangyin, 2023. "Is environmental regulation a powerful weapon to mitigate China’s PM2.5 emissions? The role of human capital," Journal of Asian Economics, Elsevier, vol. 87(C).
    30. Yu Hao & Shang Gao & Yunxia Guo & Zhiqiang Gai & Haitao Wu, 2021. "Measuring the nexus between economic development and environmental quality based on environmental Kuznets curve: a comparative study between China and Germany for the period of 2000–2017," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 23(11), pages 16848-16873, November.
    31. Zhonghua Cheng & Qingfei Xu & Ian Fraser Sanderson, 2021. "China's economic growth and haze pollution control," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 107(3), pages 2653-2669, July.
    32. Zhichuan Zhu & Bo Liu & Zhuoxi Yu & Jianhong Cao, 2022. "Effects of the Digital Economy on Carbon Emissions: Evidence from China," IJERPH, MDPI, vol. 19(15), pages 1-21, August.
    33. Weijiang Liu & Mingze Du, 2021. "Is Technological Progress Selective for Multiple Pollutant Emissions?," IJERPH, MDPI, vol. 18(17), pages 1-17, September.
    34. Beata Milewska & Dariusz Milewski, 2023. "The Impact of Energy Consumption Costs on the Profitability of Production Companies in Poland in the Context of the Energy Crisis," Energies, MDPI, vol. 16(18), pages 1-19, September.
    35. Yu, Yantuan & Chen, Xudong & Zhang, Ning, 2022. "Innovation and energy productivity: An empirical study of the innovative city pilot policy in China✰," Technological Forecasting and Social Change, Elsevier, vol. 176(C).
    36. Kangni Lyu & Shuwang Yang & Kun Zheng & Yao Zhang, 2023. "How Does the Digital Economy Affect Carbon Emission Efficiency? Evidence from Energy Consumption and Industrial Value Chain," Energies, MDPI, vol. 16(2), pages 1-20, January.
    37. Ping Chen & Jiawei Gao & Zheng Ji & Han Liang & Yu Peng, 2022. "Do Artificial Intelligence Applications Affect Carbon Emission Performance?—Evidence from Panel Data Analysis of Chinese Cities," Energies, MDPI, vol. 15(15), pages 1-16, August.
    38. Yang Yi & Le Wen & Shan He, 2022. "Partitioning for “Common but Differentiated” Precise Air Pollution Governance: A Combined Machine Learning and Spatial Econometric Approach," Energies, MDPI, vol. 15(9), pages 1-23, May.
    39. Du, Gang & Li, Wendi, 2022. "Does innovative city building promote green logistics efficiency? Evidence from a quasi-natural experiment with 285 cities," Energy Economics, Elsevier, vol. 114(C).
    40. lv, Kangjuan & Pan, Minjie & Huang, Li & Song, Daqiang & Qian, Xinlei, 2023. "Can intellectual property rights protection reduce air pollution? A quasi-natural experiment from China," Structural Change and Economic Dynamics, Elsevier, vol. 65(C), pages 210-222.
    41. Xiaodong Yang & Weilong Wang & Xufeng Su & Siyu Ren & Qiying Ran & Jianlong Wang & Jianhong Cao, 2023. "Analysis of the influence of land finance on haze pollution: An empirical study based on 269 prefecture‐level cities in China," Growth and Change, Wiley Blackwell, vol. 54(1), pages 101-134, March.
    42. Jinling Yan & Junfeng Zhao & Xiaodong Yang & Xufeng Su & Hailing Wang & Qiying Ran & Jianliang Shen, 2021. "Does Low-Carbon City Pilot Policy Alleviate Urban Haze Pollution? Empirical Evidence from a Quasi-Natural Experiment in China," IJERPH, MDPI, vol. 18(21), pages 1-20, October.

  2. Sheng, Mingyue & Sharp, Basil, 2019. "Aggregate road passenger travel demand in New Zealand: A seemingly unrelated regression approach," Transportation Research Part A: Policy and Practice, Elsevier, vol. 124(C), pages 55-68.

    Cited by:

    1. Dadashova, Bahar & Li, Xiao & Turner, Shawn & Koeneman, Pete, 2021. "Multivariate time series analysis of traffic congestion measures in urban areas as they relate to socioeconomic indicators," Socio-Economic Planning Sciences, Elsevier, vol. 75(C).
    2. Zhao, Jiaxin & Mattauch, Linus, 2021. "When standards have better distributional consequences than carbon taxes," VfS Annual Conference 2021 (Virtual Conference): Climate Economics 242351, Verein für Socialpolitik / German Economic Association.
    3. Zhang, Qian & Liu, Xiaoxiao & Spurgeon, Sarah & Yu, Dingli, 2021. "A two-layer modelling framework for predicting passenger flow on trains: A case study of London underground trains," Transportation Research Part A: Policy and Practice, Elsevier, vol. 151(C), pages 119-139.
    4. Rich, Jeppe & Fox, James, 2024. "Cost sharing in passenger transport models: specification, implementation, and impacts," Transportation Research Part A: Policy and Practice, Elsevier, vol. 179(C).
    5. Tsemekidi Tzeiranaki, Sofia & Economidou, Marina & Bertoldi, Paolo & Thiel, Christian & Fontaras, Georgios & Clementi, Enrico Luca & Franco De Los Rios, Camilo, 2023. "“The impact of energy efficiency and decarbonisation policies on the European road transport sector”," Transportation Research Part A: Policy and Practice, Elsevier, vol. 170(C).
    6. Ahmed, Kashif & Kamihigashi, Takashi & Matsuo, Miwa, 2023. "Positive fuel price elasticities of expressway traffic flows: Insights for policymakers and management strategists," Transport Policy, Elsevier, vol. 142(C), pages 99-114.
    7. Tiong, Kah Yong & Ma, Zhenliang & Palmqvist, Carl-William, 2023. "Analyzing factors contributing to real-time train arrival delays using seemingly unrelated regression models," Transportation Research Part A: Policy and Practice, Elsevier, vol. 174(C).
    8. Zhao, Jiaxin & Mattauch, Linus, 2022. "When standards have better distributional consequences than carbon taxes," Journal of Environmental Economics and Management, Elsevier, vol. 116(C).
    9. Dean Hyslop & Trinh Le & David Maré & Lynn Riggs & Nic Watson, 2023. "Domestic transport charges: Estimation of transport-related elasticities," Working Papers 23_10, Motu Economic and Public Policy Research.

  3. Nan Jiang & Basil Sharp & Mingyue Sheng, 2009. "New Zealand's emissions trading scheme," New Zealand Economic Papers, Taylor & Francis Journals, vol. 43(1), pages 69-79.

    Cited by:

    1. Huang, Wenyang & Wang, Huiwen & Qin, Haotong & Wei, Yigang & Chevallier, Julien, 2022. "Convolutional neural network forecasting of European Union allowances futures using a novel unconstrained transformation method," Energy Economics, Elsevier, vol. 110(C).
    2. Eric Karpas & Suzi Kerr, 2011. "Preliminary Evidence on Responses to the New Zealand Forestry Emissions Trading Scheme," Working Papers 11_09, Motu Economic and Public Policy Research.
    3. Lyu, Chenyan & Jamasb, Tooraj & Spanholtz, Jan Peter Georg, 2021. "The Long Covid of Energy Markets and Prices," Working Papers 16-2021, Copenhagen Business School, Department of Economics, revised 02 Nov 2021.
    4. Gren, Ing-Marie & Zeleke, Abenezer Aklilu, 2016. "Policy design for forest carbon sequestration: A review of the literature," Forest Policy and Economics, Elsevier, vol. 70(C), pages 128-136.
    5. Innocent Bakam & Robin Matthews, 2009. "Emission trading in agriculture: a study of design options using an agent-based approach," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 14(8), pages 755-776, December.
    6. Keswani Mehra, Meeta & Mukherjee, Saptarshi & Dutta, Monica, 2012. "Toward a framework for implementation of climate change treaty through self-enforcing mechanisms," MPRA Paper 36286, University Library of Munich, Germany.
    7. Hua, Weiqi & Jiang, Jing & Sun, Hongjian & Wu, Jianzhong, 2020. "A blockchain based peer-to-peer trading framework integrating energy and carbon markets," Applied Energy, Elsevier, vol. 279(C).
    8. Amelia Sharman & Richard Perkins, 2017. "Post-decisional logics of inaction: The influence of knowledge controversy in climate policy decision-making," Environment and Planning A, , vol. 49(10), pages 2281-2299, October.
    9. Mario A. Fernandez & Adam J. Daigneault, 2018. "Money Does Grow On Trees: Impacts Of The Paris Agreement On The New Zealand Economy," Climate Change Economics (CCE), World Scientific Publishing Co. Pte. Ltd., vol. 9(03), pages 1-23, August.
    10. Matthies, Brent D. & Kalliokoski, Tuomo & Ekholm, Tommi & Hoen, Hans Fredrik & Valsta, Lauri T., 2015. "Risk, reward, and payments for ecosystem services: A portfolio approach to ecosystem services and forestland investment," Ecosystem Services, Elsevier, vol. 16(C), pages 1-12.
    11. Jessika Richter & Luis Mundaca, 2015. "Achieving and maintaining institutional feasibility in emissions trading: the case of New Zealand," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 20(8), pages 1487-1509, December.
    12. Matthies, Brent D. & Valsta, Lauri T., 2016. "Optimal forest species mixture with carbon storage and albedo effect for climate change mitigation," Ecological Economics, Elsevier, vol. 123(C), pages 95-105.

More information

Research fields, statistics, top rankings, if available.

Statistics

Access and download statistics for all items

Co-authorship network on CollEc

Corrections

All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. For general information on how to correct material on RePEc, see these instructions.

To update listings or check citations waiting for approval, Mingyue Sheng should log into the RePEc Author Service.

To make corrections to the bibliographic information of a particular item, find the technical contact on the abstract page of that item. There, details are also given on how to add or correct references and citations.

To link different versions of the same work, where versions have a different title, use this form. Note that if the versions have a very similar title and are in the author's profile, the links will usually be created automatically.

Please note that most corrections can take a couple of weeks to filter through the various RePEc services.

IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.