IDEAS home Printed from https://ideas.repec.org/p/zbw/imfswp/175.html
   My bibliography  Save this paper

Estimation and forecasting using mixed-frequency DSGE models

Author

Listed:
  • Meyer-Gohde, Alexander
  • Shabalina, Ekaterina

Abstract

In this paper, we propose a new method to forecast macroeconomic variables that combines two existing approaches to mixed-frequency data in DSGE models. The first existing approach estimates the DSGE model in a quarterly frequency and uses higher frequency auxiliary data only for forecasting (see Giannone, Monti and Reichlin (2016)). The second method transforms a quarterly state space into a monthly frequency and applies, e.g., the Kalman filter when faced missing observations (see Foroni and Marcellino (2014)). Our algorithm combines the advantages of these two existing approaches, using the information from monthly auxiliary variables to inform in-between quarter DSGE estimates and forecasts. We compare our new method with the existing methods using simulated data from the textbook 3-equation New Keynesian model (see, e.g., Galí (2008)) and real-world data with the Smets and Wouters (2007) model. With the simulated data, our new method outperforms all other methods, including forecasts from the standard quarterly model. With real world data, incorporating auxiliary variables as in our method substantially decreases forecasting errors for recessions, but casting the model in a monthly frequency delivers better forecasts in normal times.

Suggested Citation

  • Meyer-Gohde, Alexander & Shabalina, Ekaterina, 2022. "Estimation and forecasting using mixed-frequency DSGE models," IMFS Working Paper Series 175, Goethe University Frankfurt, Institute for Monetary and Financial Stability (IMFS).
  • Handle: RePEc:zbw:imfswp:175
    as

    Download full text from publisher

    File URL: https://www.econstor.eu/bitstream/10419/267686/1/1827583045.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Giannone, Domenico & Monti, Francesca & Reichlin, Lucrezia, 2016. "Exploiting the monthly data flow in structural forecasting," Journal of Monetary Economics, Elsevier, vol. 84(C), pages 201-215.
    2. Francis X. Diebold & Roberto S. Mariano, 1991. "Comparing predictive accuracy I: an asymptotic test," Discussion Paper / Institute for Empirical Macroeconomics 52, Federal Reserve Bank of Minneapolis.
    3. Christensen, Bent Jesper & Posch, Olaf & van der Wel, Michel, 2016. "Estimating dynamic equilibrium models using mixed frequency macro and financial data," Journal of Econometrics, Elsevier, vol. 194(1), pages 116-137.
    4. Christiano, Lawrence J. & Eichenbaum, Martin, 1987. "Temporal aggregation and structural inference in macroeconomics," Carnegie-Rochester Conference Series on Public Policy, Elsevier, vol. 26(1), pages 63-130, January.
    5. Frank Smets & Rafael Wouters, 2007. "Shocks and Frictions in US Business Cycles: A Bayesian DSGE Approach," American Economic Review, American Economic Association, vol. 97(3), pages 586-606, June.
    6. Cimadomo, Jacopo & Giannone, Domenico & Lenza, Michele & Monti, Francesca & Sokol, Andrej, 2022. "Nowcasting with large Bayesian vector autoregressions," Journal of Econometrics, Elsevier, vol. 231(2), pages 500-519.
    7. Frank Schorfheide & Dongho Song, 2015. "Real-Time Forecasting With a Mixed-Frequency VAR," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 33(3), pages 366-380, July.
    8. Boneva, Lena & Fawcett, Nicholas & Masolo, Riccardo M. & Waldron, Matt, 2019. "Forecasting the UK economy: Alternative forecasting methodologies and the role of off-model information," International Journal of Forecasting, Elsevier, vol. 35(1), pages 100-120.
    9. Durbin, James & Koopman, Siem Jan, 2012. "Time Series Analysis by State Space Methods," OUP Catalogue, Oxford University Press, edition 2, number 9780199641178.
    10. Ruey Yau & C. James Hueng, 2019. "Nowcasting GDP Growth for Small Open Economies with a Mixed-Frequency Structural Model," Computational Economics, Springer;Society for Computational Economics, vol. 54(1), pages 177-198, June.
    11. David Kohns & Arnab Bhattacharjee, 2019. "Interpreting Big Data in the Macro Economy: A Bayesian Mixed Frequency Estimator," CEERP Working Paper Series 010, Centre for Energy Economics Research and Policy, Heriot-Watt University.
    12. Taylor, John B., 1993. "Discretion versus policy rules in practice," Carnegie-Rochester Conference Series on Public Policy, Elsevier, vol. 39(1), pages 195-214, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Cimadomo, Jacopo & Giannone, Domenico & Lenza, Michele & Monti, Francesca & Sokol, Andrej, 2022. "Nowcasting with large Bayesian vector autoregressions," Journal of Econometrics, Elsevier, vol. 231(2), pages 500-519.
    2. Bacchiocchi, Emanuele & Bastianin, Andrea & Missale, Alessandro & Rossi, Eduardo, 2016. "Structural analysis with mixed frequencies: monetary policy, uncertainty and gross capital flows," Working Papers 2016-04, Joint Research Centre, European Commission.
    3. Bacchiocchi, Emanuele & Bastianin, Andrea & Missale, Alessandro & Rossi, Eduardo, 2020. "Structural analysis with mixed-frequency data: A model of US capital flows," Economic Modelling, Elsevier, vol. 89(C), pages 427-443.
    4. Iacopini, Matteo & Poon, Aubrey & Rossini, Luca & Zhu, Dan, 2023. "Bayesian mixed-frequency quantile vector autoregression: Eliciting tail risks of monthly US GDP," Journal of Economic Dynamics and Control, Elsevier, vol. 157(C).
    5. Bjarni G. Einarsson, 2024. "Online Monitoring of Policy Optimality," Economics wp95, Department of Economics, Central bank of Iceland.
    6. Bayer, Christian & Born, Benjamin & Luetticke, Ralph, 2023. "The liquidity channel of fiscal policy," Journal of Monetary Economics, Elsevier, vol. 134(C), pages 86-117.
    7. Mertens, Elmar, 2023. "Precision-based sampling for state space models that have no measurement error," Journal of Economic Dynamics and Control, Elsevier, vol. 154(C).
    8. Consolo, Agostino & Foroni, Claudia & Martínez Hernández, Catalina, 2021. "A mixed frequency BVAR for the euro area labour market," Working Paper Series 2601, European Central Bank.
    9. Christian Bayer & Benjamin Born & Ralph Luetticke, 2024. "Shocks, Frictions, and Inequality in US Business Cycles," American Economic Review, American Economic Association, vol. 114(5), pages 1211-1247, May.
    10. Foroni, Claudia & Gelain, Paolo & Marcellino, Massimiliano, 2022. "The financial accelerator mechanism: does frequency matter?," Working Paper Series 2637, European Central Bank.
    11. Alessandri, Piergiorgio & Gazzani, Andrea & Vicondoa, Alejandro, 2023. "Are the effects of uncertainty shocks big or small?," European Economic Review, Elsevier, vol. 158(C).
    12. Christensen, Bent Jesper & Posch, Olaf & van der Wel, Michel, 2016. "Estimating dynamic equilibrium models using mixed frequency macro and financial data," Journal of Econometrics, Elsevier, vol. 194(1), pages 116-137.
    13. Petropoulos, Fotios & Apiletti, Daniele & Assimakopoulos, Vassilios & Babai, Mohamed Zied & Barrow, Devon K. & Ben Taieb, Souhaib & Bergmeir, Christoph & Bessa, Ricardo J. & Bijak, Jakub & Boylan, Joh, 2022. "Forecasting: theory and practice," International Journal of Forecasting, Elsevier, vol. 38(3), pages 705-871.
      • Fotios Petropoulos & Daniele Apiletti & Vassilios Assimakopoulos & Mohamed Zied Babai & Devon K. Barrow & Souhaib Ben Taieb & Christoph Bergmeir & Ricardo J. Bessa & Jakub Bijak & John E. Boylan & Jet, 2020. "Forecasting: theory and practice," Papers 2012.03854, arXiv.org, revised Jan 2022.
    14. Belongia, Michael T. & Ireland, Peter N., 2022. "A reconsideration of money growth rules," Journal of Economic Dynamics and Control, Elsevier, vol. 135(C).
    15. Gelain, Paolo & Manganelli, Simone, 2020. "Monetary policy with judgment," Working Paper Series 2404, European Central Bank.
    16. Serena Ng & Susannah Scanlan, 2023. "Constructing High Frequency Economic Indicators by Imputation," Papers 2303.01863, arXiv.org, revised Oct 2023.
    17. Ruey Yau & C. James Hueng, 2019. "Nowcasting GDP Growth for Small Open Economies with a Mixed-Frequency Structural Model," Computational Economics, Springer;Society for Computational Economics, vol. 54(1), pages 177-198, June.
    18. Mumtaz, Haroon & Theodoridis, Konstantinos, 2017. "Common and country specific economic uncertainty," Journal of International Economics, Elsevier, vol. 105(C), pages 205-216.
    19. Federico Di Pace & Matthias Hertweck, 2019. "Labor Market Frictions, Monetary Policy, and Durable Goods," Review of Economic Dynamics, Elsevier for the Society for Economic Dynamics, vol. 32, pages 274-304, April.
    20. Jean-Luc Gaffard, 2014. "Crise de la théorie et crise de la politique économique. Des modèles d'équilibre général stochastique aux modèles de dynamique hors de l'équilibre," Revue économique, Presses de Sciences-Po, vol. 65(1), pages 71-96.

    More about this item

    Keywords

    Mixed-frequency data; DSGE models; Forecasting; Estimation; Temporal aggregation;
    All these keywords.

    JEL classification:

    • E12 - Macroeconomics and Monetary Economics - - General Aggregative Models - - - Keynes; Keynesian; Post-Keynesian; Modern Monetary Theory
    • E17 - Macroeconomics and Monetary Economics - - General Aggregative Models - - - Forecasting and Simulation: Models and Applications
    • E37 - Macroeconomics and Monetary Economics - - Prices, Business Fluctuations, and Cycles - - - Forecasting and Simulation: Models and Applications
    • E44 - Macroeconomics and Monetary Economics - - Money and Interest Rates - - - Financial Markets and the Macroeconomy
    • C61 - Mathematical and Quantitative Methods - - Mathematical Methods; Programming Models; Mathematical and Simulation Modeling - - - Optimization Techniques; Programming Models; Dynamic Analysis
    • C68 - Mathematical and Quantitative Methods - - Mathematical Methods; Programming Models; Mathematical and Simulation Modeling - - - Computable General Equilibrium Models

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:zbw:imfswp:175. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: ZBW - Leibniz Information Centre for Economics (email available below). General contact details of provider: https://edirc.repec.org/data/hoffmde.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.