IDEAS home Printed from https://ideas.repec.org/p/wbk/wbrwps/9519.html
   My bibliography  Save this paper

Using Mobile Data to Understand Urban Mobility Patterns in Freetown, Sierra Leone

Author

Listed:
  • Arroyo Arroyo,Fatima
  • Fernandez Gonzalez,Marta
  • Matekenya,Dunstan
  • Espinet Alegre,Xavier

Abstract

In recent years, researchers have demonstrated that digital footprints from mobile phones can be exploited to generate data that are useful for transport planning, disaster response, and other development activities—thanks mainly to the high penetration rate of mobile phones even in low-income regions. Most recently, in the effort to mitigate the spread of COVID-19, these data can be used and explored to track mobility patterns and monitor the results of lockdown measures. However, as rightly noted by other scholars, most of the work has been limited to proofs of concept or academic work: it is hard to point to any real-world use cases. In contrast, this paper uses mobile data to obtain insight on urban mobility patterns, such as number of trips, average trip length, and relation between poverty, mobility, and areas of Freetown, the capital of Sierra Leone. These data were used in preparation of an urban mobility lending operation. Additionally, the paper describes good practices in the following areas: accessing mobile data from telecom operators, frameworks for generating origin and destination matrices, and validation of results.

Suggested Citation

  • Arroyo Arroyo,Fatima & Fernandez Gonzalez,Marta & Matekenya,Dunstan & Espinet Alegre,Xavier, 2021. "Using Mobile Data to Understand Urban Mobility Patterns in Freetown, Sierra Leone," Policy Research Working Paper Series 9519, The World Bank.
  • Handle: RePEc:wbk:wbrwps:9519
    as

    Download full text from publisher

    File URL: http://documents.worldbank.org/curated/en/224761611175801192/pdf/Using-Mobile-Data-to-Understand-Urban-Mobility-Patterns-in-Freetown-Sierra-Leone.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Laetitia Gauvin & Michele Tizzoni & Simone Piaggesi & Andrew Young & Natalia Adler & Stefaan Verhulst & Leo Ferres & Ciro Cattuto, 2020. "Gender gaps in urban mobility," Palgrave Communications, Palgrave Macmillan, vol. 7(1), pages 1-13, December.
    2. Williams, Sarah & White, Adam & Waiganjo, Peter & Orwa, Daniel & Klopp, Jacqueline, 2015. "The digital matatu project: Using cell phones to create an open source data for Nairobi's semi-formal bus system," Journal of Transport Geography, Elsevier, vol. 49(C), pages 39-51.
    3. Marta C. González & César A. Hidalgo & Albert-László Barabási, 2009. "Understanding individual human mobility patterns," Nature, Nature, vol. 458(7235), pages 238-238, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Contreras, Hugo Alejandro & Candia, Cristian & Olchevskaia, Rodrigo Vladislav Troncoso & Ferres, Leo & Celedón, María Loreto Bravo & Lepri, Bruno & Rodriguez-Sickert, Carlos, 2023. "Linking Physical Violence to Women's Mobility in Chile," SocArXiv uad59, Center for Open Science.
    2. Andrés Leiva-Araos & Héctor Allende-Cid, 2021. "A Hierarchical Fuzzy-Based Correction Algorithm for the Neighboring Network Hit Problem," Mathematics, MDPI, vol. 9(4), pages 1-36, February.
    3. Saiz, Albert & Salazar-Miranda, Arianna, 2023. "Understanding Urban Economies, Land Use, and Social Dynamics in the City: Big Data and Measurement," IZA Discussion Papers 16501, Institute of Labor Economics (IZA).
    4. Jeong-Hui Park & Eunhye Yoo & Youngdeok Kim & Jung-Min Lee, 2021. "What Happened Pre- and during COVID-19 in South Korea? Comparing Physical Activity, Sleep Time, and Body Weight Status," IJERPH, MDPI, vol. 18(11), pages 1-13, May.
    5. Matteo Böhm & Mirco Nanni & Luca Pappalardo, 2022. "Gross polluters and vehicle emissions reduction," Nature Sustainability, Nature, vol. 5(8), pages 699-707, August.
    6. David Kofoed Wind & Piotr Sapiezynski & Magdalena Anna Furman & Sune Lehmann, 2016. "Inferring Stop-Locations from WiFi," PLOS ONE, Public Library of Science, vol. 11(2), pages 1-15, February.
    7. Zhou, Xingang & Yeh, Anthony G.O. & Yue, Yang, 2018. "Spatial variation of self-containment and jobs-housing balance in Shenzhen using cellphone big data," Journal of Transport Geography, Elsevier, vol. 68(C), pages 102-108.
    8. Zheng Yan & Wenqian Robertson & Yaosheng Lou & Tom W. Robertson & Sung Yong Park, 2021. "Finding leading scholars in mobile phone behavior: a mixed-method analysis of an emerging interdisciplinary field," Scientometrics, Springer;Akadémiai Kiadó, vol. 126(12), pages 9499-9517, December.
    9. Ali Enes Dingil & Federico Rupi & Domokos Esztergár-Kiss, 2021. "An Integrative Review of Socio-Technical Factors Influencing Travel Decision-Making and Urban Transport Performance," Sustainability, MDPI, vol. 13(18), pages 1-20, September.
    10. Duan, Zhengyu & Zhao, Haoran & Li, Zhenming, 2023. "Non-linear effects of built environment and socio-demographics on activity space," Journal of Transport Geography, Elsevier, vol. 111(C).
    11. Elisa Frutos-Bernal & Ángel Martín del Rey & Irene Mariñas-Collado & María Teresa Santos-Martín, 2022. "An Analysis of Travel Patterns in Barcelona Metro Using Tucker3 Decomposition," Mathematics, MDPI, vol. 10(7), pages 1-17, March.
    12. Zhai, Wei & Bai, Xueyin & Peng, Zhong-ren & Gu, Chaolin, 2019. "From edit distance to augmented space-time-weighted edit distance: Detecting and clustering patterns of human activities in Puget Sound region," Journal of Transport Geography, Elsevier, vol. 78(C), pages 41-55.
    13. Khajehnejad, Moein, 2019. "Efficiency of long-range navigation on Treelike fractals," Chaos, Solitons & Fractals, Elsevier, vol. 122(C), pages 102-110.
    14. Chaogui Kang & Yu Liu & Diansheng Guo & Kun Qin, 2015. "A Generalized Radiation Model for Human Mobility: Spatial Scale, Searching Direction and Trip Constraint," PLOS ONE, Public Library of Science, vol. 10(11), pages 1-11, November.
    15. Yifeng Liu & Yuan Lai, 2024. "Analyzing jogging activity patterns and adaptation to public health regulation," Environment and Planning B, , vol. 51(3), pages 670-688, March.
    16. Li, Ze-Tao & Nie, Wei-Peng & Cai, Shi-Min & Zhao, Zhi-Dan & Zhou, Tao, 2023. "Exploring the topological characteristics of urban trip networks based on taxi trajectory data," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 609(C).
    17. Claudio Gariazzo & Armando Pelliccioni & Maria Paola Bogliolo, 2019. "Spatiotemporal Analysis of Urban Mobility Using Aggregate Mobile Phone Derived Presence and Demographic Data: A Case Study in the City of Rome, Italy," Data, MDPI, vol. 4(1), pages 1-25, January.
    18. Han Wang & Damien Fay & Kenneth N. Brown & Liam Kilmartin, 2016. "Modelling revenue generation in a dynamically priced mobile telephony service," Telecommunication Systems: Modelling, Analysis, Design and Management, Springer, vol. 62(4), pages 711-734, August.
    19. Toru Nakamura & Toru Takumi & Atsuko Takano & Fumiyuki Hatanaka & Yoshiharu Yamamoto, 2013. "Characterization and Modeling of Intermittent Locomotor Dynamics in Clock Gene-Deficient Mice," PLOS ONE, Public Library of Science, vol. 8(3), pages 1-8, March.
    20. Fangye Du & Jiaoe Wang & Liang Mao & Jian Kang, 2024. "Daily rhythm of urban space usage: insights from the nexus of urban functions and human mobility," Palgrave Communications, Palgrave Macmillan, vol. 11(1), pages 1-10, December.

    More about this item

    Keywords

    Transport Services; Telecommunications Infrastructure; ICT Applications;
    All these keywords.

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:wbk:wbrwps:9519. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Roula I. Yazigi (email available below). General contact details of provider: https://edirc.repec.org/data/dvewbus.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.