IDEAS home Printed from https://ideas.repec.org/p/wai/econwp/12-01.html
   My bibliography  Save this paper

A Mathematical Optimisation Model of a New Zealand Dairy Farm: The Integrated Dairy Enterprise (IDEA) Framework

Author

Listed:
  • Graeme J. Doole

    (University of Waikato)

  • Alvaro J. Romera

    (Dairy New Zealand)

  • Alfredo A. Adler

    (Dairy New Zealand)

Abstract

Optimisation models are a key tool for the analysis of emerging policies, price sets, and technologies within grazing systems. A detailed nonlinear optimisation model of a New Zealand dairy farming system is described. The framework is notable for its rich portrayal of pasture and cow biology that add substantial descriptive power to standard approaches. Key processes incorporated in the model include: (1) pasture growth and digestibility that differ with residual pasture mass and rotation length, (2) pasture utilisation that varies by stocking rate, and (3) different levels of intake regulation. Model output is shown to closely match data from a more detailed simulation model (deviations between 0 and 5 per cent) and survey data (deviations between 1 and 11 per cent), providing confidence in its predictive capacity. Use of the model is demonstrated in an empirical application investigating the relative profitability of production systems involving different amounts of imported feed under price variation. The case study indicates superior profitability associated with the use of a moderate level of imported supplement, with Operating Profit ($NZ ha-1) of 934, 926, 1186, 1314, and 1093 when imported feed makes up 0, 5, 10, 20 and 30 per cent of the diet, respectively. Stocking rate and milk production per cow increase by 35 and 29 per cent, respectively, as the proportion of imported feed increases from 0 to 30 per cent of the diet. Pasture utilisation increases with stocking rate. Accordingly, pasture eaten and nitrogen fertiliser application increase by 20 and 213 per cent, respectively, as the proportion of imported feed increases from 0 to 30 per cent of the diet.

Suggested Citation

  • Graeme J. Doole & Alvaro J. Romera & Alfredo A. Adler, 2012. "A Mathematical Optimisation Model of a New Zealand Dairy Farm: The Integrated Dairy Enterprise (IDEA) Framework," Working Papers in Economics 12/01, University of Waikato.
  • Handle: RePEc:wai:econwp:12/01
    as

    Download full text from publisher

    File URL: https://repec.its.waikato.ac.nz/wai/econwp/1201.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. McCall, D. G. & Bishop-Hurley, G. J., 2003. "A pasture growth model for use in a whole-farm dairy production model," Agricultural Systems, Elsevier, vol. 76(3), pages 1183-1205, June.
    2. Kingwell, Ross S., 2011. "Managing complexity in modern farming," Australian Journal of Agricultural and Resource Economics, Australian Agricultural and Resource Economics Society, vol. 55(1), pages 1-23.
    3. Graeme J. Doole & David J. Pannell, 2008. "Optimisation of a Large, Constrained Simulation Model using Compressed Annealing," Journal of Agricultural Economics, Wiley Blackwell, vol. 59(1), pages 188-206, February.
    4. Olney, G. R. & Kirk, G. J., 1989. "A management model that helps increase profit on Western Australian Dairy Farms," Agricultural Systems, Elsevier, vol. 31(4), pages 367-380.
    5. Kingwell, Ross & Fuchsbichler, Amy, 2011. "The whole-farm benefits of controlled traffic farming: An Australian appraisal," Agricultural Systems, Elsevier, vol. 104(7), pages 513-521, September.
    6. Berentsen, P. B. M. & Giesen, G. W. J., 1995. "An environmental-economic model at farm level to analyse institutional and technical change in dairy farming," Agricultural Systems, Elsevier, vol. 49(2), pages 153-175.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Notte, Gastón & Cancela, Héctor & Pedemonte, Martín & Chilibroste, Pablo & Rossing, Walter & Groot, Jeroen C.J., 2020. "A multi-objective optimization model for dairy feeding management," Agricultural Systems, Elsevier, vol. 183(C).
    2. Notte, Gastón & Pedemonte, Martín & Cancela, Héctor & Chilibroste, Pablo, 2016. "Resource allocation in pastoral dairy production systems: Evaluating exact and genetic algorithms approaches," Agricultural Systems, Elsevier, vol. 148(C), pages 114-123.
    3. David A Fleming & Kate Preston, 2018. "International Agricultural Mitigation Research and the Impacts and Value of Two SLMACC Research Projects," Working Papers 18_11, Motu Economic and Public Policy Research.
    4. Dowson, Oscar & Philpott, Andy & Mason, Andrew & Downward, Anthony, 2019. "A multi-stage stochastic optimization model of a pastoral dairy farm," European Journal of Operational Research, Elsevier, vol. 274(3), pages 1077-1089.
    5. Doole, Graeme J. & Romera, Alvaro J., 2013. "Detailed description of grazing systems using nonlinear optimisation methods: A model of a pasture-based New Zealand dairy farm," Agricultural Systems, Elsevier, vol. 122(C), pages 33-41.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Finlayson, John & Real, Daniel & Nordblom, Tom & Revell, Clinton & Ewing, Mike & Kingwell, Ross, 2012. "Farm level assessments of a novel drought tolerant forage: Tedera (Bituminaria bituminosa C.H. Stirt var. albomarginata)," Agricultural Systems, Elsevier, vol. 112(C), pages 38-47.
    2. Doole, Graeme J. & Romera, Alvaro J., 2015. "Trade-offs between profit, production, and environmental footprint on pasture-based dairy farms in the Waikato region of New Zealand," Agricultural Systems, Elsevier, vol. 141(C), pages 14-23.
    3. Parsons, D. J., 1998. "Optimising silage harvesting plans in a grass and grazing simulation using the revised simplex method and a genetic algorithm," Agricultural Systems, Elsevier, vol. 56(1), pages 29-44, January.
    4. Groeneveld, Rolf A. & Wesseler, Justus & Berentsen, Paul B.M., 2013. "Dominos in the dairy: An analysis of transgenic maize in Dutch dairy farming," Ecological Economics, Elsevier, vol. 86(C), pages 107-116.
    5. Weifeng Xu & Qingsong Ruan & Chang Liu, 2019. "Can the Famous University Experience of Top Managers Improve Corporate Performance? Evidence from China," Sustainability, MDPI, vol. 11(24), pages 1-20, December.
    6. Nasca, J.A. & Feldkamp, C.R. & Arroquy, J.I. & Colombatto, D., 2015. "Efficiency and stability in subtropical beef cattle grazing systems in the northwest of Argentina," Agricultural Systems, Elsevier, vol. 133(C), pages 85-96.
    7. Sanaz Shoghi Kalkhoran & David Pannell & Maksym Polyakov & Ben White & Morteza Chalak Haghighi & Amin William Mugera & Imma Farre, 2021. "A dynamic model of optimal lime application for wheat production in Australia," Australian Journal of Agricultural and Resource Economics, Australian Agricultural and Resource Economics Society, vol. 65(2), pages 472-490, April.
    8. Taylor, Chris & Cullen, Brendan & D'Occhio, Michael & Rickards, Lauren & Eckard, Richard, 2018. "Trends in wheat yields under representative climate futures: Implications for climate adaptation," Agricultural Systems, Elsevier, vol. 164(C), pages 1-10.
    9. Gómez-Limón, José A. & Gutiérrez-Martín, Carlos & Riesgo, Laura, 2016. "Modeling at farm level: Positive Multi-Attribute Utility Programming," Omega, Elsevier, vol. 65(C), pages 17-27.
    10. Ross Kingwell, 2021. "Making Agriculture Carbon Neutral Amid a Changing Climate: The Case of South-Western Australia," Land, MDPI, vol. 10(11), pages 1-20, November.
    11. Berentsen, Paul B.M. & Hendriksen, Astrid & Heijman, Wim J.M. & van Vlokhoven, Haske A., 2007. "Costs and benefits of on-farm nature conservation," Ecological Economics, Elsevier, vol. 62(3-4), pages 571-579, May.
    12. Nazrul Islam & Vilaphonh Xayavong & Ross Kingwell, 2014. "Broadacre farm productivity and profitability in south-western Australia," Australian Journal of Agricultural and Resource Economics, Australian Agricultural and Resource Economics Society, vol. 58(2), pages 147-170, April.
    13. Nuthall, Peter L., 2012. "The intuitive world of farmers – The case of grazing management systems and experts," Agricultural Systems, Elsevier, vol. 107(C), pages 65-73.
    14. Ramsden, S. & Gibbons, J. & Wilson, P., 1999. "Impacts of changing relative prices on farm level dairy production in the UK," Agricultural Systems, Elsevier, vol. 62(3), pages 201-215, December.
    15. Lally, Breda & van Rensburg, Tom M., 2014. "Reducing nitrogen applications on Irish dairy farms: effectiveness and efficiency of different strategies," International Journal of Agricultural Management, Institute of Agricultural Management, vol. 4(1), October.
    16. White, Robin R. & Brady, Michael, 2014. "Can consumers’ willingness to pay incentivize adoption of environmental impact reducing technologies in meat animal production?," Food Policy, Elsevier, vol. 49(P1), pages 41-49.
    17. White, Robin R. & Brady, Michael & Capper, Judith L. & Johnson, Kristen A., 2014. "Optimizing diet and pasture management to improve sustainability of U.S. beef production," Agricultural Systems, Elsevier, vol. 130(C), pages 1-12.
    18. Lelyon, Baptiste & Daniel, Karine & Chatellier, Vincent, 2008. "Decoupling and prices: determinant of dairy farmers’ choices? A model to analyse impacts of the 2003 CAP reform," 2008 International Congress, August 26-29, 2008, Ghent, Belgium 44250, European Association of Agricultural Economists.
    19. Beltran, Jesusa C. & Pannell, David J. & Doole, Graeme J. & White, Benedict, 2012. "Economic analysis of integrated weed management strategies for annual barnyardgrass (Echinochloa crus-galli complex) in Philippine rice farming systems," 2012 Conference (56th), February 7-10, 2012, Fremantle, Australia 124236, Australian Agricultural and Resource Economics Society.
    20. Beukes, P.C. & Gregorini, P. & Romera, A.J. & Dalley, D.E., 2011. "The profitability and risk of dairy cow wintering strategies in the Southland region of New Zealand," Agricultural Systems, Elsevier, vol. 104(7), pages 541-550, September.

    More about this item

    Keywords

    dairy production; mathematical optimisation; whole-farm model;
    All these keywords.

    JEL classification:

    • Q12 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Agriculture - - - Micro Analysis of Farm Firms, Farm Households, and Farm Input Markets
    • C61 - Mathematical and Quantitative Methods - - Mathematical Methods; Programming Models; Mathematical and Simulation Modeling - - - Optimization Techniques; Programming Models; Dynamic Analysis

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:wai:econwp:12/01. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Geua Boe-Gibson (email available below). General contact details of provider: https://edirc.repec.org/data/dewaknz.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.