IDEAS home Printed from https://ideas.repec.org/p/tse/wpaper/29543.html
   My bibliography  Save this paper

Do costs fall faster than revenues? Dynamics of renewables entry into electricity markets

Author

Listed:
  • Green, Richard
  • Léautier, Thomas-Olivier

Abstract

In many countries, entry of renewable electricity producers has been supported by subsidies and financed by a tax on electricity consumed. This article is the first to analytically derive the dynamics of the generation mix, subsidy, and tax as renewable capacity increases. This enables us to complement and extend previous work by providing analytical expressions for previously obtained simulation results, and deriving additional results. The analysis yields three main findings. First, the subsidy to renewable may never stop, as the value of the energy produced may decrease faster than the cost as renewable capacity increases. Second, high renewable penetration leads to a discontinuity in marginal values, after which the subsidy and tax grow extremely rapidly. Finally, reducing the occurrence of negative prices, for example by providing renewable producers with financial instead of physical dispatch insurance, yields significant benefits.

Suggested Citation

  • Green, Richard & Léautier, Thomas-Olivier, 2015. "Do costs fall faster than revenues? Dynamics of renewables entry into electricity markets," TSE Working Papers 15-591, Toulouse School of Economics (TSE).
  • Handle: RePEc:tse:wpaper:29543
    as

    Download full text from publisher

    File URL: http://www.tse-fr.eu/sites/default/files/TSE/documents/doc/wp/2015/wp_tse_591.pdf
    File Function: Full text
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Natalia Fabra & Mar Reguant, 2014. "Pass-Through of Emissions Costs in Electricity Markets," American Economic Review, American Economic Association, vol. 104(9), pages 2872-2899, September.
    2. Richard Green and Nicholas Vasilakos, 2012. "Storing Wind for a Rainy Day: What Kind of Electricity Does Denmark Export?," The Energy Journal, International Association for Energy Economics, vol. 0(Number 3).
    3. Bertsch, Joachim & Growitsch, Christian & Lorenczik, Stefan & Nagl, Stephan, 2016. "Flexibility in Europe's power sector — An additional requirement or an automatic complement?," Energy Economics, Elsevier, vol. 53(C), pages 118-131.
    4. Green, Richard & Vasilakos, Nicholas, 2011. "The economics of offshore wind," Energy Policy, Elsevier, vol. 39(2), pages 496-502, February.
    5. Karsten Neuhoff, 2008. "Learning by Doing with Constrained Growth Rates:An Application to Energy Technology Policy," The Energy Journal, International Association for Energy Economics, vol. 0(Special I), pages 165-182.
    6. Erin Baker & Meredith Fowlie & Derek Lemoine & Stanley S. Reynolds, 2013. "The Economics of Solar Electricity," Annual Review of Resource Economics, Annual Reviews, vol. 5(1), pages 387-426, June.
    7. Severin Borenstein, 2005. "The Long-Run Efficiency of Real-Time Electricity Pricing," The Energy Journal, International Association for Energy Economics, vol. 0(Number 3), pages 93-116.
    8. Lion Hirth, 2013. "The Market Value of Variable Renewables. The Effect of Solar and Wind Power Variability on their Relative Price," RSCAS Working Papers 2013/36, European University Institute.
    9. Paul L. Joskow, 2011. "Comparing the Costs of Intermittent and Dispatchable Electricity Generating Technologies," American Economic Review, American Economic Association, vol. 101(3), pages 238-241, May.
    10. Hirth, Lion, 2013. "The market value of variable renewables," Energy Economics, Elsevier, vol. 38(C), pages 218-236.
    11. Gautam Gowrisankaran & Stanley S. Reynolds & Mario Samano, 2016. "Intermittency and the Value of Renewable Energy," Journal of Political Economy, University of Chicago Press, vol. 124(4), pages 1187-1234.
    12. Joseph Cullen, 2013. "Measuring the Environmental Benefits of Wind-Generated Electricity," American Economic Journal: Economic Policy, American Economic Association, vol. 5(4), pages 107-133, November.
    13. Oswald, James & Raine, Mike & Ashraf-Ball, Hezlin, 2008. "Will British weather provide reliable electricity?," Energy Policy, Elsevier, vol. 36(8), pages 3202-3215, August.
    14. Twomey, Paul & Neuhoff, Karsten, 2010. "Wind power and market power in competitive markets," Energy Policy, Elsevier, vol. 38(7), pages 3198-3210, July.
    15. Staffell, Iain & Green, Richard, 2014. "How does wind farm performance decline with age?," Renewable Energy, Elsevier, vol. 66(C), pages 775-786.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Bistline, John & Santen, Nidhi & Young, David, 2019. "The economic geography of variable renewable energy and impacts of trade formulations for renewable mandates," Renewable and Sustainable Energy Reviews, Elsevier, vol. 106(C), pages 79-96.
    2. Helm, Carsten & Mier, Mathias, 2019. "On the efficient market diffusion of intermittent renewable energies," Energy Economics, Elsevier, vol. 80(C), pages 812-830.
    3. Lion Hirth, Falko Ueckerdt, and Ottmar Edenhofer, 2016. "Why Wind Is Not Coal: On the Economics of Electricity Generation," The Energy Journal, International Association for Energy Economics, vol. 0(Number 3).
    4. Hirth, Lion & Ueckerdt, Falko & Edenhofer, Ottmar, 2015. "Integration costs revisited – An economic framework for wind and solar variability," Renewable Energy, Elsevier, vol. 74(C), pages 925-939.
    5. Fabra, Natalia, 2021. "The energy transition: An industrial economics perspective," International Journal of Industrial Organization, Elsevier, vol. 79(C).
    6. Hirth, Lion, 2013. "The market value of variable renewables," Energy Economics, Elsevier, vol. 38(C), pages 218-236.
    7. Petersen, Claire & Reguant, Mar & Segura, Lola, 2024. "Measuring the impact of wind power and intermittency," Energy Economics, Elsevier, vol. 129(C).
    8. René Aïd & Matteo Basei & Huyên Pham, 2020. "A McKean–Vlasov approach to distributed electricity generation development," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 91(2), pages 269-310, April.
    9. Krishnamurthy, Chandra Kiran B. & Vesterberg, Mattias & Böök, Herman & Lindfors, Anders V. & Svento, Rauli, 2018. "Real-time pricing revisited: Demand flexibility in the presence of micro-generation," Energy Policy, Elsevier, vol. 123(C), pages 642-658.
    10. Brown, T. & Reichenberg, L., 2021. "Decreasing market value of variable renewables can be avoided by policy action," Energy Economics, Elsevier, vol. 100(C).
    11. Marie Petitet, Dominique Finon, and Tanguy Janssen, 2016. "Carbon Price instead of Support Schemes: Wind Power Investments by the Electricity Market," The Energy Journal, International Association for Energy Economics, vol. 0(Number 4).
    12. López Prol, Javier & Steininger, Karl W. & Zilberman, David, 2020. "The cannibalization effect of wind and solar in the California wholesale electricity market," Energy Economics, Elsevier, vol. 85(C).
    13. Helm, Carsten & Mier, Mathias, 2016. "Efficient diffusion of renewable energies: A roller-coaster ride," VfS Annual Conference 2016 (Augsburg): Demographic Change 145893, Verein für Socialpolitik / German Economic Association.
    14. Hirth, Lion, 2016. "The benefits of flexibility: The value of wind energy with hydropower," Applied Energy, Elsevier, vol. 181(C), pages 210-223.
    15. Johannes Pfeiffer, 2017. "Fossil Resources and Climate Change – The Green Paradox and Resource Market Power Revisited in General Equilibrium," ifo Beiträge zur Wirtschaftsforschung, ifo Institute - Leibniz Institute for Economic Research at the University of Munich, number 77.
    16. Philipp Beiter & Aubryn Cooperman & Eric Lantz & Tyler Stehly & Matt Shields & Ryan Wiser & Thomas Telsnig & Lena Kitzing & Volker Berkhout & Yuka Kikuchi, 2021. "Wind power costs driven by innovation and experience with further reductions on the horizon," Wiley Interdisciplinary Reviews: Energy and Environment, Wiley Blackwell, vol. 10(5), September.
    17. René Aïd & Matteo Basei & Huyên Pham, 2017. "The coordination of centralised and distributed generation," Working Papers hal-01517165, HAL.
    18. Merrick, James H., 2016. "On representation of temporal variability in electricity capacity planning models," Energy Economics, Elsevier, vol. 59(C), pages 261-274.
    19. Mills, Andrew D. & Wiser, Ryan H., 2015. "Strategies to mitigate declines in the economic value of wind and solar at high penetration in California," Applied Energy, Elsevier, vol. 147(C), pages 269-278.
    20. Bistline, John E., 2017. "Economic and technical challenges of flexible operations under large-scale variable renewable deployment," Energy Economics, Elsevier, vol. 64(C), pages 363-372.

    More about this item

    Keywords

    Electric power markets; Renewables; Public policy;
    All these keywords.

    JEL classification:

    • D61 - Microeconomics - - Welfare Economics - - - Allocative Efficiency; Cost-Benefit Analysis
    • L11 - Industrial Organization - - Market Structure, Firm Strategy, and Market Performance - - - Production, Pricing, and Market Structure; Size Distribution of Firms
    • L94 - Industrial Organization - - Industry Studies: Transportation and Utilities - - - Electric Utilities

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:tse:wpaper:29543. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: the person in charge (email available below). General contact details of provider: https://edirc.repec.org/data/tsetofr.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.