IDEAS home Printed from https://ideas.repec.org/p/tin/wpaper/20180027.html
   My bibliography  Save this paper

Unobserved Components with Stochastic Volatility in U.S. Inflation: Estimation and Signal Extraction

Author

Listed:
  • Mengheng Li

    (VU Amsterdam)

  • Siem Jan (S.J.) Koopman

    (VU Amsterdam; Tinbergen Institute, The Netherlands)

Abstract

We consider unobserved components time series models where the components are stochastically evolving over time and are subject to stochastic volatility. It enables the disentanglement of dynamic structures in both the mean and the variance of the observed time series. We develop a simulated maximum likelihood estimation method based on importance sampling and assess its performance in a Monte Carlo study. This modelling framework with trend, seasonal and irregular components is applied to quarterly and monthly US inflation in an empirical study. We find that the persistence of quarterly inflation has increased during the 2008 financial crisis while it has recently returned to its pre-crisis level. The extracted volatility pattern for the trend component can be associated with the energy shocks in the 1970s while that for the irregular component responds to the monetary regime changes from the 1980s. The scale of the changes in the seasonal component has been largest during the beginning of the 1990s. We finally present empirical evidence of relative improvements in the accuracies of point and density forecasts for monthly US inflation.

Suggested Citation

  • Mengheng Li & Siem Jan (S.J.) Koopman, 2018. "Unobserved Components with Stochastic Volatility in U.S. Inflation: Estimation and Signal Extraction," Tinbergen Institute Discussion Papers 18-027/III, Tinbergen Institute.
  • Handle: RePEc:tin:wpaper:20180027
    as

    Download full text from publisher

    File URL: https://papers.tinbergen.nl/18027.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Geweke, John, 1989. "Bayesian Inference in Econometric Models Using Monte Carlo Integration," Econometrica, Econometric Society, vol. 57(6), pages 1317-1339, November.
    2. James H. Stock & Mark W. Watson, 2008. "Phillips curve inflation forecasts," Conference Series ; [Proceedings], Federal Reserve Bank of Boston.
    3. Rong Chen & Jun S. Liu, 2000. "Mixture Kalman filters," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 62(3), pages 493-508.
    4. Richard Clarida & Jordi Galí & Mark Gertler, 2000. "Monetary Policy Rules and Macroeconomic Stability: Evidence and Some Theory," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 115(1), pages 147-180.
    5. Congressional Budget Office, 2016. "The Budget and Economic Outlook: 2016 to 2026," Reports 51129, Congressional Budget Office.
    6. Robert King & Alexander L. Wolman, 1999. "What Should the Monetary Authority Do When Prices Are Sticky?," NBER Chapters, in: Monetary Policy Rules, pages 349-404, National Bureau of Economic Research, Inc.
    7. repec:cbo:report:519082 is not listed on IDEAS
    8. Marvin Goodfriend & Robert G. King, 1997. "The New Neoclassical Synthesis and the Role of Monetary Policy," NBER Chapters, in: NBER Macroeconomics Annual 1997, Volume 12, pages 231-296, National Bureau of Economic Research, Inc.
    9. Danielsson, Jon, 1994. "Stochastic volatility in asset prices estimation with simulated maximum likelihood," Journal of Econometrics, Elsevier, vol. 64(1-2), pages 375-400.
    10. Holston, Kathryn & Laubach, Thomas & Williams, John C., 2017. "Measuring the natural rate of interest: International trends and determinants," Journal of International Economics, Elsevier, vol. 108(S1), pages 59-75.
    11. Koopman, Siem Jan & Shephard, Neil & Creal, Drew, 2009. "Testing the assumptions behind importance sampling," Journal of Econometrics, Elsevier, vol. 149(1), pages 2-11, April.
    12. Pivetta, Frederic & Reis, Ricardo, 2007. "The persistence of inflation in the United States," Journal of Economic Dynamics and Control, Elsevier, vol. 31(4), pages 1326-1358, April.
    13. Durbin, James & Koopman, Siem Jan, 2012. "Time Series Analysis by State Space Methods," OUP Catalogue, Oxford University Press, edition 2, number 9780199641178.
    14. Congressional Budget Office, 2016. "The Budget and Economic Outlook: 2016 to 2026," Reports 51129, Congressional Budget Office.
    15. Stephen G. Cecchetti & Guy Debelle, 2006. "Has the inflation process changed? [‘Did the underlying behaviour of inflation change in the 1980s? A study of 22 countries,’]," Economic Policy, CEPR, CESifo, Sciences Po;CES;MSH, vol. 21(46), pages 312-352.
    16. Durham, Garland B & Gallant, A Ronald, 2002. "Numerical Techniques for Maximum Likelihood Estimation of Continuous-Time Diffusion Processes: Reply," Journal of Business & Economic Statistics, American Statistical Association, vol. 20(3), pages 335-338, July.
    17. Robalo Marques, Carlos, 2004. "Inflation persistence: facts or artefacts?," Working Paper Series 371, European Central Bank.
    18. Thomas Laubach & John C. Williams, 2003. "Measuring the Natural Rate of Interest," The Review of Economics and Statistics, MIT Press, vol. 85(4), pages 1063-1070, November.
    19. Jean-Francois Richard, 2007. "Efficient High-Dimensional Importance Sampling," Working Paper 321, Department of Economics, University of Pittsburgh, revised Jan 2007.
    20. Carlos Robalo Marques, 2005. "Inflation persistence: facts or artefacts?," Economic Bulletin and Financial Stability Report Articles and Banco de Portugal Economic Studies, Banco de Portugal, Economics and Research Department.
    21. Congressional Budget Office, 2016. "The Budget and Economic Outlook: 2016 to 2026," Reports 51129, Congressional Budget Office.
    22. Erceg, Christopher J. & Henderson, Dale W. & Levin, Andrew T., 2000. "Optimal monetary policy with staggered wage and price contracts," Journal of Monetary Economics, Elsevier, vol. 46(2), pages 281-313, October.
    23. Diks, Cees & Panchenko, Valentyn & van Dijk, Dick, 2011. "Likelihood-based scoring rules for comparing density forecasts in tails," Journal of Econometrics, Elsevier, vol. 163(2), pages 215-230, August.
    24. Neil Shephard, 2005. "Stochastic Volatility," Economics Papers 2005-W17, Economics Group, Nuffield College, University of Oxford.
    25. Marco Del Negro & Domenico Giannone & Marc P. Giannoni & Andrea Tambalotti, 2017. "Safety, Liquidity, and the Natural Rate of Interest," Brookings Papers on Economic Activity, Economic Studies Program, The Brookings Institution, vol. 48(1 (Spring), pages 235-316.
    26. James H. Stock & Mark W. Watson, 2007. "Why Has U.S. Inflation Become Harder to Forecast?," Journal of Money, Credit and Banking, Blackwell Publishing, vol. 39(s1), pages 3-33, February.
    27. Siem Jan Koopman & André Lucas & Marcel Scharth, 2015. "Numerically Accelerated Importance Sampling for Nonlinear Non-Gaussian State-Space Models," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 33(1), pages 114-127, January.
    28. Cecchetti, Stephen & Feroli, Michael & Hooper, Peter & Kashyap, Anil & Schoenholtz, Kermit L., 2017. "Deflating Inflation Expectations: The Implications of Inflation’s Simple Dynamics," CEPR Discussion Papers 11925, C.E.P.R. Discussion Papers.
    29. Durham, Garland B & Gallant, A Ronald, 2002. "Numerical Techniques for Maximum Likelihood Estimation of Continuous-Time Diffusion Processes," Journal of Business & Economic Statistics, American Statistical Association, vol. 20(3), pages 297-316, July.
    30. Koopman, Siem Jan & Shephard, Neil (ed.), 2015. "Unobserved Components and Time Series Econometrics," OUP Catalogue, Oxford University Press, number 9780199683666.
    31. Aoki, Kosuke, 2001. "Optimal monetary policy responses to relative-price changes," Journal of Monetary Economics, Elsevier, vol. 48(1), pages 55-80, August.
    32. Richard, Jean-Francois & Zhang, Wei, 2007. "Efficient high-dimensional importance sampling," Journal of Econometrics, Elsevier, vol. 141(2), pages 1385-1411, December.
    33. Shephard, Neil (ed.), 2005. "Stochastic Volatility: Selected Readings," OUP Catalogue, Oxford University Press, number 9780199257201.
    34. Robert J. Gordon, 1990. "The Phillips Curve Now and Then," NBER Working Papers 3393, National Bureau of Economic Research, Inc.
    35. Congressional Budget Office, 2016. "The Budget and Economic Outlook: 2016 to 2026," Reports 51129, Congressional Budget Office.
    36. Andrew Atkeson & Lee E. Ohanian, 2001. "Are Phillips curves useful for forecasting inflation?," Quarterly Review, Federal Reserve Bank of Minneapolis, vol. 25(Win), pages 2-11.
    37. repec:hal:journl:peer-00834423 is not listed on IDEAS
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Robert C. M. Beyer & Lazar Milivojevic, 2023. "Dynamics and synchronization of global equilibrium interest rates," Applied Economics, Taylor & Francis Journals, vol. 55(28), pages 3195-3214, June.
    2. Ivan Mendieta-Munoz & Mengheng Li, 2019. "The Multivariate Simultaneous Unobserved Compenents Model and Identification via Heteroskedasticity," Working Paper Series, Department of Economics, University of Utah 2019_06, University of Utah, Department of Economics.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mengheng Li & Siem Jan Koopman, 2021. "Unobserved components with stochastic volatility: Simulation‐based estimation and signal extraction," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 36(5), pages 614-627, August.
    2. Siem Jan Koopman & Rutger Lit & Thuy Minh Nguyen, 2012. "Fast Efficient Importance Sampling by State Space Methods," Tinbergen Institute Discussion Papers 12-008/4, Tinbergen Institute, revised 16 Oct 2014.
    3. Siem Jan Koopman & Rutger Lit & André Lucas, 2017. "Intraday Stochastic Volatility in Discrete Price Changes: The Dynamic Skellam Model," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 112(520), pages 1490-1503, October.
    4. C.S. Bos & S.J. Koopman & M. Ooms, 2007. "Long Memory Modelling of Inflation with Stochastic Variance and Structural Breaks," Tinbergen Institute Discussion Papers 07-099/4, Tinbergen Institute.
    5. Scharth, Marcel & Kohn, Robert, 2016. "Particle efficient importance sampling," Journal of Econometrics, Elsevier, vol. 190(1), pages 133-147.
    6. Kleppe, Tore Selland & Skaug, Hans Julius, 2012. "Fitting general stochastic volatility models using Laplace accelerated sequential importance sampling," Computational Statistics & Data Analysis, Elsevier, vol. 56(11), pages 3105-3119.
    7. Siem Jan Koopman & André Lucas & Marcel Scharth, 2015. "Numerically Accelerated Importance Sampling for Nonlinear Non-Gaussian State-Space Models," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 33(1), pages 114-127, January.
    8. Siem Jan Koopman & Rutger Lit & André Lucas, 2014. "The Dynamic Skellam Model with Applications," Tinbergen Institute Discussion Papers 14-032/IV/DSF73, Tinbergen Institute, revised 06 Jul 2015.
    9. Holston, Kathryn & Laubach, Thomas & Williams, John C., 2017. "Measuring the natural rate of interest: International trends and determinants," Journal of International Economics, Elsevier, vol. 108(S1), pages 59-75.
    10. Koopman, Siem Jan & Shephard, Neil & Creal, Drew, 2009. "Testing the assumptions behind importance sampling," Journal of Econometrics, Elsevier, vol. 149(1), pages 2-11, April.
    11. Kleppe, Tore Selland & Yu, Jun & Skaug, Hans J., 2014. "Maximum likelihood estimation of partially observed diffusion models," Journal of Econometrics, Elsevier, vol. 180(1), pages 73-80.
    12. Kevin Lansing, 2009. "Time Varying U.S. Inflation Dynamics and the New Keynesian Phillips Curve," Review of Economic Dynamics, Elsevier for the Society for Economic Dynamics, vol. 12(2), pages 304-326, April.
    13. Falk Bräuning & Siem Jan Koopman, 2016. "The dynamic factor network model with an application to global credit risk," Working Papers 16-13, Federal Reserve Bank of Boston.
    14. Mesters, G. & Koopman, S.J., 2014. "Generalized dynamic panel data models with random effects for cross-section and time," Journal of Econometrics, Elsevier, vol. 180(2), pages 127-140.
    15. Michael McLeay & Silvana Tenreyro, 2020. "Optimal Inflation and the Identification of the Phillips Curve," NBER Macroeconomics Annual, University of Chicago Press, vol. 34(1), pages 199-255.
    16. Erceg, Christopher J. & Levin, Andrew T., 2002. "Optimal monetary policy with durable and non-durable goods," Working Paper Series 179, European Central Bank.
    17. Tommaso Proietti & Alessandra Luati, 2013. "Maximum likelihood estimation of time series models: the Kalman filter and beyond," Chapters, in: Nigar Hashimzade & Michael A. Thornton (ed.), Handbook of Research Methods and Applications in Empirical Macroeconomics, chapter 15, pages 334-362, Edward Elgar Publishing.
    18. Tsyplakov, Alexander, 2010. "The links between inflation and inflation uncertainty at the longer horizon," MPRA Paper 26908, University Library of Munich, Germany.
    19. Borus Jungbacker & Siem Jan Koopman, 2006. "Model-Based Measurement of Actual Volatility in High-Frequency Data," Advances in Econometrics, in: Econometric Analysis of Financial and Economic Time Series, pages 183-210, Emerald Group Publishing Limited.
    20. Mengheng Li & Ivan Mendieta-Munoz, 2019. "The multivariate simultaneous unobserved components model and identification via heteroskedasticity," Working Paper Series 2019/08, Economics Discipline Group, UTS Business School, University of Technology, Sydney.

    More about this item

    Keywords

    Importance Sampling; Kalman Filter; Monte Carlo Simulation; Stochastic Volatility; Unobserved Components Time Series Model; Inflation;
    All these keywords.

    JEL classification:

    • C32 - Mathematical and Quantitative Methods - - Multiple or Simultaneous Equation Models; Multiple Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes; State Space Models
    • C53 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Forecasting and Prediction Models; Simulation Methods
    • E31 - Macroeconomics and Monetary Economics - - Prices, Business Fluctuations, and Cycles - - - Price Level; Inflation; Deflation
    • E37 - Macroeconomics and Monetary Economics - - Prices, Business Fluctuations, and Cycles - - - Forecasting and Simulation: Models and Applications

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:tin:wpaper:20180027. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Tinbergen Office +31 (0)10-4088900 (email available below). General contact details of provider: https://edirc.repec.org/data/tinbenl.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.