IDEAS home Printed from https://ideas.repec.org/p/ssb/dispap/473.html
   My bibliography  Save this paper

Capacity utilization in a generalized Malmquist index including environmental factors. A decomposition analysis

Author

Listed:

Abstract

Productivity measures ignoring environmental effects may give misleading information on total productivity growth. Further, business cycles in the form of capacity utilization may also significantly influence productivity measures. In this paper, we develop an overall Malmquist productivity index and decompose changing efficiency rates into a contribution from environmental factors, capacity utilization and other traditional factors. The capacity utilization element is a contribution to the literature in that it takes into account the capacity for producing negative externalities. We decompose the frontier movements into a contribution from traditional factors and environmental factors and apply the model to a micro data set for two Norwegian industries: the pulp and paper industry and the inorganic chemistry industry. We find frontier improvements over the period included in the analysis, while the distance to the frontier has increased. Capacity utilization increased over the period and contributed to an average approach to the frontier, while environmental indicators contributed negatively. Analysis of the two industries indicates that differences between the traditional and revised efficiency measures changes are ambiguous, except from the capacity utilization element. This indicates that the environment loses when business cycles improve.

Suggested Citation

  • Torstein Bye & Annegrete Bruvoll & Jan Larsson, 2006. "Capacity utilization in a generalized Malmquist index including environmental factors. A decomposition analysis," Discussion Papers 473, Statistics Norway, Research Department.
  • Handle: RePEc:ssb:dispap:473
    as

    Download full text from publisher

    File URL: https://www.ssb.no/a/publikasjoner/pdf/DP/dp473.pdf
    Download Restriction: no
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Diewert, Erwin, 2007. "Index Numbers," Economics working papers diewert-07-01-03-08-17-23, Vancouver School of Economics, revised 31 Jan 2007.
    2. Annegrete Bruvoll & Torstein Bye & Jan Larsson & Kjetil Telle, 2003. "Technological changes in the pulp and paper industry and the role of uniform versus selective environmental policy," Discussion Papers 357, Statistics Norway, Research Department.
    3. Torstein Bye & Einar Hope, 2005. "Deregulation of electricity markets : The Norwegian experience," Discussion Papers 433, Statistics Norway, Research Department.
    4. Bruno De Borger & Kristiaan Kerstens, 2000. "The Malmquist Productivity Index and Plant Capacity Utilization," Scandinavian Journal of Economics, Wiley Blackwell, vol. 102(2), pages 303-310, June.
    5. Fare, Rolf, et al, 1993. "Derivation of Shadow Prices for Undesirable Outputs: A Distance Function Approach," The Review of Economics and Statistics, MIT Press, vol. 75(2), pages 374-380, May.
    6. Fare, Rolf & Grosskopf, Shawna & Kokkelenberg, Edward C, 1989. "Measuring Plant Capacity, Utilization and Technical Change: A Nonparametric Approach," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 30(3), pages 655-666, August.
    7. Reinhard, Stijn & Knox Lovell, C. A. & Thijssen, Geert J., 2000. "Environmental efficiency with multiple environmentally detrimental variables; estimated with SFA and DEA," European Journal of Operational Research, Elsevier, vol. 121(2), pages 287-303, March.
    8. Yaisawarng, Suthathip & Klein, J Douglass, 1994. "The Effects of Sulfur Dioxide Controls on Productivity Change in the U.S. Electric Power Industry," The Review of Economics and Statistics, MIT Press, vol. 76(3), pages 447-460, August.
    9. Fare, Rolf, et al, 1989. "Multilateral Productivity Comparisons When Some Outputs Are Undesirable: A Nonparametric Approach," The Review of Economics and Statistics, MIT Press, vol. 71(1), pages 90-98, February.
    10. Hailu, Atakelty & Veeman, Terrence S., 2001. "Alternative methods for environmentally adjusted productivity analysis," Agricultural Economics, Blackwell, vol. 25(2-3), pages 211-218, September.
    11. Cropper, Maureen L & Oates, Wallace E, 1992. "Environmental Economics: A Survey," Journal of Economic Literature, American Economic Association, vol. 30(2), pages 675-740, June.
    12. Pittman, Russell W, 1983. "Multilateral Productivity Comparisons with Undesirable Outputs," Economic Journal, Royal Economic Society, vol. 93(372), pages 883-891, December.
    13. Daniel Tyteca, 1997. "Linear Programming Models for the Measurement of Environmental Performance of Firms—Concepts and Empirical Results," Journal of Productivity Analysis, Springer, vol. 8(2), pages 183-197, May.
    14. De Borger, Bruno & Kerstens, Kristiaan, 2000. " The Malmquist Productivity Index and Plant Capacity Utilization," Scandinavian Journal of Economics, Wiley Blackwell, vol. 102(2), pages 303-310, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Giovanni Cesaroni & Kristiaan Kerstens & Ignace Van de Woestyne, 2017. "A New Input-Oriented Plant Capacity Notion: Definition and Empirical Comparison," Pacific Economic Review, Wiley Blackwell, vol. 22(4), pages 720-739, October.
    2. Chen, Zhenling & Zhang, Xiaoling & Ni, Guohua, 2020. "Decomposing capacity utilization under carbon dioxide emissions reduction constraints in data envelopment analysis: An application to Chinese regions," Energy Policy, Elsevier, vol. 139(C).
    3. Arnaud Abad & Paola Ravelojaona, 2021. "Pollution‐adjusted productivity analysis: The use of Malmquist and Luenberger productivity measures," Managerial and Decision Economics, John Wiley & Sons, Ltd., vol. 42(3), pages 635-648, April.
    4. Alfredsson, Eva & Månsson, Jonas & Vikström, Peter, 2016. "Internalising external environmental effects in efficiency analysis," Economic Analysis and Policy, Elsevier, vol. 51(C), pages 22-31.
    5. Kakali Mukhopadhyay, 2008. "Air pollution and income distribution in India," Asia-Pacific Development Journal, United Nations Economic and Social Commission for Asia and the Pacific (ESCAP), vol. 15(1), pages 35-64, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hoang, Viet-Ngu & Coelli, Tim, 2011. "Measurement of agricultural total factor productivity growth incorporating environmental factors: A nutrients balance approach," Journal of Environmental Economics and Management, Elsevier, vol. 62(3), pages 462-474.
    2. Halkos, George & Petrou, Kleoniki Natalia, 2018. "A critical review of the main methods to treat undesirable outputs in DEA," MPRA Paper 90374, University Library of Munich, Germany.
    3. Halkos, George & Petrou, Kleoniki Natalia, 2019. "Treating undesirable outputs in DEA: A critical review," Economic Analysis and Policy, Elsevier, vol. 62(C), pages 97-104.
    4. Yang, Hongliang & Pollitt, Michael, 2010. "The necessity of distinguishing weak and strong disposability among undesirable outputs in DEA: Environmental performance of Chinese coal-fired power plants," Energy Policy, Elsevier, vol. 38(8), pages 4440-4444, August.
    5. Hailu, Atakelty & Hailu, Atakelty, 2003. "Pollution abatement and productivity performance of regional Canadian pulp and paper industries," Journal of Forest Economics, Elsevier, vol. 9(1), pages 5-25.
    6. Leleu, Hervé, 2013. "Shadow pricing of undesirable outputs in nonparametric analysis," European Journal of Operational Research, Elsevier, vol. 231(2), pages 474-480.
    7. Bruce Domazlicky & William Weber, 2004. "Does Environmental Protection Lead to Slower Productivity Growth in the Chemical Industry?," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 28(3), pages 301-324, July.
    8. Murty, Sushama & Robert Russell, R. & Levkoff, Steven B., 2012. "On modeling pollution-generating technologies," Journal of Environmental Economics and Management, Elsevier, vol. 64(1), pages 117-135.
    9. Forsund, Finn R., 2009. "Good Modelling of Bad Outputs: Pollution and Multiple-Output Production," International Review of Environmental and Resource Economics, now publishers, vol. 3(1), pages 1-38, August.
    10. Hailu, Atakelty & Veeman, Terrence S., 2000. "Environmentally Sensitive Productivity Analysis of the Canadian Pulp and Paper Industry, 1959-1994: An Input Distance Function Approach," Journal of Environmental Economics and Management, Elsevier, vol. 40(3), pages 251-274, November.
    11. Mekaroonreung, Maethee & Johnson, Andrew L., 2012. "Estimating the shadow prices of SO2 and NOx for U.S. coal power plants: A convex nonparametric least squares approach," Energy Economics, Elsevier, vol. 34(3), pages 723-732.
    12. Kristiaan Kerstens & Jafar Sadeghi & Ignace Van de Woestyne, 2020. "Plant capacity notions in a non-parametric framework: a brief review and new graph or non-oriented plant capacities," Annals of Operations Research, Springer, vol. 288(2), pages 837-860, May.
    13. Zhou, Peng & Poh, Kim Leng & Ang, Beng Wah, 2007. "A non-radial DEA approach to measuring environmental performance," European Journal of Operational Research, Elsevier, vol. 178(1), pages 1-9, April.
    14. Magambo, Isaiah & Dikgang, Johane & Gelo, Dambala & Tregenna, Fiona, 2021. "Environmental and Technical Efficiency in Large Gold Mines in Developing Countries," MPRA Paper 108068, University Library of Munich, Germany.
    15. Van Ha, Nguyen & Kant, Shashi & Maclaren, Virginia, 2008. "Shadow prices of environmental outputs and production efficiency of household-level paper recycling units in Vietnam," Ecological Economics, Elsevier, vol. 65(1), pages 98-110, March.
    16. Zuniga Gonzalez, Carlos Alberto, 2012. "Total factor productivity and Bio Economy effects," MPRA Paper 49355, University Library of Munich, Germany, revised 13 Nov 2012.
    17. Ambec, Stefan & Barla, Philippe, 2001. "Productivité et réglementation environnementale: une analyse de l'hypothèse de Porter," Cahiers de recherche 0107, Université Laval - Département d'économique.
    18. Graham, Mary, 2009. "Developing a social perspective to farm performance analysis," Ecological Economics, Elsevier, vol. 68(8-9), pages 2390-2398, June.
    19. George Halkos & George Papageorgiou, 2016. "Spatial environmental efficiency indicators in regional waste generation: a nonparametric approach," Journal of Environmental Planning and Management, Taylor & Francis Journals, vol. 59(1), pages 62-78, January.
    20. Imane Bounadi & Khalil Allali & Aziz Fadlaoui & Mohammed Dehhaoui, 2023. "Water Pollution Abatement in Olive Oil Industry in Morocco: Cost Estimates and Policy Implications," Sustainability, MDPI, vol. 15(5), pages 1-19, February.

    More about this item

    Keywords

    Emissions; Productivity change; Pulp and paper; Inorganic chemistry; Malmquist index; Frontier technology; Capacity utilization;
    All these keywords.

    JEL classification:

    • L73 - Industrial Organization - - Industry Studies: Primary Products and Construction - - - Forest Products
    • O12 - Economic Development, Innovation, Technological Change, and Growth - - Economic Development - - - Microeconomic Analyses of Economic Development
    • O14 - Economic Development, Innovation, Technological Change, and Growth - - Economic Development - - - Industrialization; Manufacturing and Service Industries; Choice of Technology
    • O33 - Economic Development, Innovation, Technological Change, and Growth - - Innovation; Research and Development; Technological Change; Intellectual Property Rights - - - Technological Change: Choices and Consequences; Diffusion Processes
    • O41 - Economic Development, Innovation, Technological Change, and Growth - - Economic Growth and Aggregate Productivity - - - One, Two, and Multisector Growth Models
    • Q48 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Energy - - - Government Policy
    • R38 - Urban, Rural, Regional, Real Estate, and Transportation Economics - - Real Estate Markets, Spatial Production Analysis, and Firm Location - - - Government Policy

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ssb:dispap:473. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: L Maasø (email available below). General contact details of provider: https://edirc.repec.org/data/ssbgvno.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.