IDEAS home Printed from https://ideas.repec.org/p/sek/iacpro/9412216.html
   My bibliography  Save this paper

Effects of Using JP8-Diesel Fuel Mixtures in a Pump Injector Engine on Engine Emissions

Author

Listed:
  • Hasan AYDOGAN

    (Mechanical Engineering Department, Selcuk University)

  • Emin Cagatay ALTINOK

    (Mechanical Engineering Department, Selcuk University)

Abstract

JP-8 fuel used in the aviation industry, especially in military fields, is used as a common military fuel between NATO countries. As the basic substance of JP-8 fuel, kerosene flares at high temperatures directly increases aircraft safety and freezing point is around -49 °C, it is advantageous to use easily in fuel systems. In this study, the effects of jp-8 and diesel fuel mixtures on engine emissions were investigated experimentally. A 3-cylinder, four-stroke, turbocharged diesel engine with pump injector fuel system was used for this purpose. 5% JP8 was added to diesel fuel. It was used as a fuel in the engine and the obtained values were analyzed according to the diesel fuel.

Suggested Citation

  • Hasan AYDOGAN & Emin Cagatay ALTINOK, 2019. "Effects of Using JP8-Diesel Fuel Mixtures in a Pump Injector Engine on Engine Emissions," Proceedings of International Academic Conferences 9412216, International Institute of Social and Economic Sciences.
  • Handle: RePEc:sek:iacpro:9412216
    as

    Download full text from publisher

    File URL: https://iises.net/proceedings/iises-international-academic-conference-paris/table-of-content/detail?cid=94&iid=003&rid=12216
    File Function: First version, 2019
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Sogut, M. Ziya & Seçgin, Ömer & Ozkaynak, Süleyman, 2019. "Investigation of thermodynamics performance of alternative jet fuels based on decreasing threat of paraffinic and sulfur," Energy, Elsevier, vol. 181(C), pages 1114-1120.
    2. Lee, Jeongwoo & Lee, Jungyeon & Chu, Sanghyun & Choi, Hoimyung & Min, Kyoungdoug, 2015. "Emission reduction potential in a light-duty diesel engine fueled by JP-8," Energy, Elsevier, vol. 89(C), pages 92-99.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yu, Wenbin & Zhao, Feiyang & Yang, Wenming, 2020. "Qualitative analysis of particulate matter emission from diesel engine fueled with Jet A-1 under multivariate combustion boundaries by principal component analysis," Applied Energy, Elsevier, vol. 269(C).
    2. Özbek, Emre & Yalin, Gorkem & Ekici, Selcuk & Karakoc, T. Hikmet, 2020. "Evaluation of design methodology, limitations, and iterations of a hydrogen fuelled hybrid fuel cell mini UAV," Energy, Elsevier, vol. 213(C).
    3. Yousefzadeh, H. & Tavakolpour-Saleh, A.R., 2021. "A novel unified dynamic-thermodynamic method for estimating damping and predicting performance of kinematic Stirling engines," Energy, Elsevier, vol. 224(C).
    4. Tay, Kun Lin & Yang, Wenming & Li, Jing & Zhou, Dezhi & Yu, Wenbin & Zhao, Feiyang & Chou, Siaw Kiang & Mohan, Balaji, 2017. "Numerical investigation on the combustion and emissions of a kerosene-diesel fueled compression ignition engine assisted by ammonia fumigation," Applied Energy, Elsevier, vol. 204(C), pages 1476-1488.
    5. Yu, Wenbin & Tay, Kunlin & Zhao, Feiyang & Yang, Wenming & Li, Han & Xu, Hongpeng, 2018. "Development of a new jet fuel surrogate and its associated reaction mechanism coupled with a multistep soot model for diesel engine combustion," Applied Energy, Elsevier, vol. 228(C), pages 42-56.
    6. Hyun Min Baek & Hyung Min Lee, 2022. "Spray Behavior, Combustion, and Emission Characteristics of Jet Propellant-5 and Biodiesel Fuels with Multiple Split Injection Strategies," Energies, MDPI, vol. 15(7), pages 1-19, March.
    7. Hyungmin Lee, 2021. "Spray, Combustion, and Air Pollutant Characteristics of JP-5 for Naval Aircraft from Experimental Single-Cylinder CRDI Diesel Engine," Energies, MDPI, vol. 14(9), pages 1-12, April.
    8. Alherbawi, Mohammad & McKay, Gordon & Mackey, Hamish R. & Al-Ansari, Tareq, 2021. "Jatropha curcas for jet biofuel production: Current status and future prospects," Renewable and Sustainable Energy Reviews, Elsevier, vol. 135(C).
    9. Zhou, Dezhi & Tay, Kun Lin & Tu, Yaojie & Li, Jing & Yang, Wenming & Zhao, Dan, 2018. "A numerical investigation on the injection timing of boot injection rate-shapes in a kerosene-diesel engine with a clustered dynamic adaptive chemistry method," Applied Energy, Elsevier, vol. 220(C), pages 117-126.
    10. Bai, Yuanqi & Wang, Ying & Wang, Xiaochen & Zhou, Qiongyang & Duan, Qimeng, 2021. "Development of physical-chemical surrogate models and skeletal mechanism for the spray and combustion simulation of RP-3 kerosene fuels," Energy, Elsevier, vol. 215(PB).
    11. Ardebili, Seyed Mohammad Safieddin & Kocakulak, Tolga & Aytav, Emre & Calam, Alper, 2022. "Investigation of the effect of JP-8 fuel and biodiesel fuel mixture on engine performance and emissions by experimental and statistical methods," Energy, Elsevier, vol. 254(PA).
    12. Kroyan, Yuri & Wojcieszyk, Michał & Kaario, Ossi & Larmi, Martti, 2022. "Modeling the impact of sustainable aviation fuel properties on end-use performance and emissions in aircraft jet engines," Energy, Elsevier, vol. 255(C).

    More about this item

    Keywords

    JP8; Engine Emissions; Diesel Fuel;
    All these keywords.

    JEL classification:

    • Q40 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Energy - - - General

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:sek:iacpro:9412216. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Klara Cermakova (email available below). General contact details of provider: https://iises.net/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.