IDEAS home Printed from https://ideas.repec.org/p/rsc/rsceui/2010-04.html
   My bibliography  Save this paper

Transmission Network Investment as an Anticipation Problem

Author

Listed:
  • Vincent Rious
  • Jean-Michel Glachant
  • Philippe Dessante

Abstract

This paper proposes a probabilistic model to evaluate if a proactive TSO that anticipates the connection of new generators with short construction duration compared to the time needed to reinforce the network is more efficient than a reactive TSO that does not make any anticipation but that may then face higher congestion while the network is being reinforced. This evaluation is made in presence of anticipation costs both related to the study of the project of network investment and to the administrative procedures needed to obtain the building agreement. Our results in terms of social costs clearly show a limit of probability for the connection of generators beyond which a proactive TSO is more efficient than a reactive TSO. Evaluated on realistic cases of connection, this limit of probability is found quite low, which indicates that the proactive behaviour for a TSO shall generally be the optimal one.

Suggested Citation

  • Vincent Rious & Jean-Michel Glachant & Philippe Dessante, 2010. "Transmission Network Investment as an Anticipation Problem," RSCAS Working Papers 2010/04, European University Institute.
  • Handle: RePEc:rsc:rsceui:2010/04
    as

    Download full text from publisher

    File URL: http://cadmus.eui.eu/dspace/bitstream/1814/13081/1/RSCAS_2010_04.pdf
    File Function: Full text
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Boyle, Glenn & Guthrie, Graeme & Meade, Richard, 2006. "Real Options and Transmission Investment: the New Zealand Grid Investment Test," Working Paper Series 3846, Victoria University of Wellington, The New Zealand Institute for the Study of Competition and Regulation.
    2. Roques, Fabien A. & Newbery, David M. & Nuttall, William J., 2008. "Fuel mix diversification incentives in liberalized electricity markets: A Mean-Variance Portfolio theory approach," Energy Economics, Elsevier, vol. 30(4), pages 1831-1849, July.
    3. Enzo Sauma & Shmuel Oren, 2006. "Proactive planning and valuation of transmission investments in restructured electricity markets," Journal of Regulatory Economics, Springer, vol. 30(3), pages 358-387, November.
    4. Finon, Dominique & Perez, Yannick, 2007. "The social efficiency of instruments of promotion of renewable energies: A transaction-cost perspective," Ecological Economics, Elsevier, vol. 62(1), pages 77-92, April.
    5. McLaren Loring, Joyce, 2007. "Wind energy planning in England, Wales and Denmark: Factors influencing project success," Energy Policy, Elsevier, vol. 35(4), pages 2648-2660, April.
    6. Enzo Sauma & Shmuel Oren, 2006. "Proactive planning and valuation of transmission investments in restructured electricity markets," Journal of Regulatory Economics, Springer, vol. 30(3), pages 261-290, November.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Leonardo Meeus, 2015. "Offshore grids for renewables: do we need a particular regulatory framework?," Economics of Energy & Environmental Policy, International Association for Energy Economics, vol. 0(Number 1).
    2. Höffler, Felix & Wambach, Achim, 2013. "Investment Coordination in Network Industries: The Case of Electricity Grid and Electricity," EWI Working Papers 2013-12, Energiewirtschaftliches Institut an der Universitaet zu Koeln (EWI).
    3. Groppi, Angelamaria & Fumagalli, Elena, 2014. "Network expansion by a proactive transmission system operator: A case study," Energy Policy, Elsevier, vol. 69(C), pages 610-623.
    4. Ruderer, Dominik & Zöttl, Gregor, 2018. "Transmission pricing and investment incentives," Utilities Policy, Elsevier, vol. 55(C), pages 14-30.
    5. Ruderer, D., 2012. "The Impact of Transmission Pricing in Network Industries," Cambridge Working Papers in Economics 1230, Faculty of Economics, University of Cambridge.
    6. Klinge Jacobsen, Henrik & Schröder, Sascha Thorsten, 2012. "Curtailment of renewable generation: Economic optimality and incentives," Energy Policy, Elsevier, vol. 49(C), pages 663-675.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Rious Vincent & Perez Yannick & Glachant Jean-Michel, 2011. "Power Transmission Network Investment as an Anticipation Problem," Review of Network Economics, De Gruyter, vol. 10(4), pages 1-23, December.
    2. Groppi, Angelamaria & Fumagalli, Elena, 2014. "Network expansion by a proactive transmission system operator: A case study," Energy Policy, Elsevier, vol. 69(C), pages 610-623.
    3. Munoz, Francisco D. & van der Weijde, Adriaan Hendrik & Hobbs, Benjamin F. & Watson, Jean-Paul, 2017. "Does risk aversion affect transmission and generation planning? A Western North America case study," Energy Economics, Elsevier, vol. 64(C), pages 213-225.
    4. Henao, A. & Sauma, E. & Reyes, T. & Gonzalez, A., 2017. "What is the value of the option to defer an investment in Transmission Expansion Planning? An estimation using Real Options," Energy Economics, Elsevier, vol. 65(C), pages 194-207.
    5. Simshauser, Paul, 2024. "On static vs. dynamic line ratings in renewable energy zones," Energy Economics, Elsevier, vol. 129(C).
    6. Fürsch, Michaela & Hagspiel, Simeon & Jägemann, Cosima & Nagl, Stephan & Lindenberger, Dietmar & Tröster, Eckehard, 2013. "The role of grid extensions in a cost-efficient transformation of the European electricity system until 2050," Applied Energy, Elsevier, vol. 104(C), pages 642-652.
    7. Faezeh Akhavizadegan & Lizhi Wang & James McCalley, 2020. "Scenario Selection for Iterative Stochastic Transmission Expansion Planning," Energies, MDPI, vol. 13(5), pages 1-18, March.
    8. Camelo, Sergio & Papavasiliou, Anthony & de Castro, Luciano & Riascos, Álvaro & Oren, Shmuel, 2018. "A structural model to evaluate the transition from self-commitment to centralized unit commitment," Energy Economics, Elsevier, vol. 75(C), pages 560-572.
    9. Matamala, Carlos & Moreno, Rodrigo & Sauma, Enzo, 2019. "The value of network investment coordination to reduce environmental externalities when integrating renewables: Case on the Chilean transmission network," Energy Policy, Elsevier, vol. 126(C), pages 251-263.
    10. Martin Weibelzahl & Alexandra Märtz, 2020. "Optimal storage and transmission investments in a bilevel electricity market model," Annals of Operations Research, Springer, vol. 287(2), pages 911-940, April.
    11. Street, Alexandre & Valladão, Davi & Lawson, André & Velloso, Alexandre, 2020. "Assessing the cost of the Hazard-Decision simplification in multistage stochastic hydrothermal scheduling," Applied Energy, Elsevier, vol. 280(C).
    12. Ochoa, Camila & van Ackere, Ann, 2015. "Winners and losers of market coupling," Energy, Elsevier, vol. 80(C), pages 522-534.
    13. Paul Simshauser & Farhad Billimoria & Craig Rogers, 2021. "Optimising VRE plant capacity in Renewable Energy Zones," Working Papers EPRG2121, Energy Policy Research Group, Cambridge Judge Business School, University of Cambridge.
    14. Dominique Finon, 2012. "Institutions and Electricity Systems Transition towards Decarbonisation : The hidden change of the market regime," Working Papers hal-00866417, HAL.
    15. Egerer, Jonas & Grimm, Veronika & Grübel, Julia & Zöttl, Gregor, 2022. "Long-run market equilibria in coupled energy sectors: A study of uniqueness," European Journal of Operational Research, Elsevier, vol. 303(3), pages 1335-1354.
    16. Leonardo Meeus, 2015. "Offshore grids for renewables: do we need a particular regulatory framework?," Economics of Energy & Environmental Policy, International Association for Energy Economics, vol. 0(Number 1).
    17. Clastres, Cédric & Khalfallah, Haikel, 2021. "Dynamic pricing efficiency with strategic retailers and consumers: An analytical analysis of short-term market interactions," Energy Economics, Elsevier, vol. 98(C).
    18. Valentin Bertsch & Wolf Fichtner, 2016. "A participatory multi-criteria approach for power generation and transmission planning," Annals of Operations Research, Springer, vol. 245(1), pages 177-207, October.
    19. Kang, Jidong & Wu, Zhuochun & Ng, Tsan Sheng & Su, Bin, 2023. "A stochastic-robust optimization model for inter-regional power system planning," European Journal of Operational Research, Elsevier, vol. 310(3), pages 1234-1248.
    20. Urzúa, I.A. & Olmedo, J.C. & Sauma, E.E., 2016. "Impact of intermittent non-conventional renewable generation in the costs of the Chilean main power system," Renewable and Sustainable Energy Reviews, Elsevier, vol. 60(C), pages 810-821.

    More about this item

    Keywords

    Liberalised power system; Transmission Network; Planning; Investment; Anticipation;
    All these keywords.

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:rsc:rsceui:2010/04. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: RSCAS web unit (email available below). General contact details of provider: https://edirc.repec.org/data/rsiueit.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.