IDEAS home Printed from https://ideas.repec.org/p/ris/ewikln/2011_014.html
   My bibliography  Save this paper

Natural Gas in Road Transportation - A Low-emission Bridging Technology?

Author

Listed:
  • Wang-Helmreich, Hanna

    (Wuppertal Institute for Climate, Environment and Energy)

  • Lochner, Stefan

    (Energiewirtschaftliches Institut an der Universitaet zu Koeln)

Abstract

Greenhouse gas emission reductions are at the centre of national and international efforts to mitigate climate change. In road transportation, many politically incentivised measures focus on increasing the energy efficiency of established technologies, or promoting electric or hybrid vehicles. The abatement potential of the former approach is limited, electric mobility technologies are not yet market-ready. In a case study for Germany, this paper focuses on natural gas powered vehicles as a bridging technology towards low-emission road transportation. Scenario analyses with a low level of aggregation show that natural gas-based road transportation in Germany can accumulate up to 464 million tonnes of CO2-equivalent emission reductions until 2030 depending on the speed of the diffusion process. If similar policies were adopted EU-wide, the emission reduction potential could reach a maximum of about 2.5 billion tonnes of CO2-equivalent. A model-based analysis shows that the comparative cost advantage of natural gas relative to petrol and diesel per energy unit is not significantly reduced by the increased gas demand from natural gas vehicles. Capital costs for the transformation of the transport system to natural gas are therefore accompanied by lower fuel costs. Specific emission abatement costs of natural gas based mobility decline over time. After between 15 and 20 years, they are projected to be relatively low or even negative when a maximum rate of diffusion of natural gas vehicles is assumed.

Suggested Citation

  • Wang-Helmreich, Hanna & Lochner, Stefan, 2011. "Natural Gas in Road Transportation - A Low-emission Bridging Technology?," EWI Working Papers 2011-14, Energiewirtschaftliches Institut an der Universitaet zu Koeln (EWI).
  • Handle: RePEc:ris:ewikln:2011_014
    as

    Download full text from publisher

    File URL: https://www.ewi.uni-koeln.de/cms/wp-content/uploads/2019/02/EWI_WP_11-14_Natural_gas_road_transportation.pdf
    File Function: Full text
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Lochner, Stefan & Bothe, David, 2009. "The development of natural gas supply costs to Europe, the United States and Japan in a globalizing gas market--Model-based analysis until 2030," Energy Policy, Elsevier, vol. 37(4), pages 1518-1528, April.
    2. Chester, Mikhail & Horvath, Arpad, 2007. "Environmental Life-cycle Assessment of Passenger Transportation: A Detailed Methodology for Energy, Greenhouse Gas and Criteria Pollutant Inventories of Automobiles, Buses, Light Rail, Heavy Rail and ," Institute of Transportation Studies, Research Reports, Working Papers, Proceedings qt5bz4s1n3, Institute of Transportation Studies, UC Berkeley.
    3. Malte Schwoon, 2006. "Simulating the adoption of fuel cell vehicles," Journal of Evolutionary Economics, Springer, vol. 16(4), pages 435-472, October.
    4. Malte Schwoon, 2005. "Simulating the Adoption of Fuel Cell Vehicles," Working Papers FNU-59, Research unit Sustainability and Global Change, Hamburg University, revised Feb 2006.
    5. Yeh, Sonia, 2007. "An empirical analysis on the adoption of alternative fuel vehicles: The case of natural gas vehicles," Energy Policy, Elsevier, vol. 35(11), pages 5865-5875, November.
    6. Quiggin, John, 2007. "Stern and his critics on discounting and climate change," Risk and Sustainable Management Group Working Papers 152087, University of Queensland, School of Economics.
    7. Stern,Nicholas, 2007. "The Economics of Climate Change," Cambridge Books, Cambridge University Press, number 9780521700801, November.
    8. Nagl, Stephan & Fürsch, Michaela & Paulus, Moritz & Richter, Jan & Trueby, Johannes & Lindenberger, Dietmar, 2010. "Scenarios for an Energy Policy Concept of the German Government," EWI Working Papers 2010-6, Energiewirtschaftliches Institut an der Universitaet zu Koeln (EWI).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Petschnig, Martin & Heidenreich, Sven & Spieth, Patrick, 2014. "Innovative alternatives take action – Investigating determinants of alternative fuel vehicle adoption," Transportation Research Part A: Policy and Practice, Elsevier, vol. 61(C), pages 68-83.
    2. Gnann, Till & Plötz, Patrick, 2015. "A review of combined models for market diffusion of alternative fuel vehicles and their refueling infrastructure," Renewable and Sustainable Energy Reviews, Elsevier, vol. 47(C), pages 783-793.
    3. Balint, T. & Lamperti, F. & Mandel, A. & Napoletano, M. & Roventini, A. & Sapio, A., 2017. "Complexity and the Economics of Climate Change: A Survey and a Look Forward," Ecological Economics, Elsevier, vol. 138(C), pages 252-265.
    4. Valeria Costantini & Francesco Crespi, 2013. "Public policies for a sustainable energy sector: regulation, diversity and fostering of innovation," Journal of Evolutionary Economics, Springer, vol. 23(2), pages 401-429, April.
    5. Blanco, Herib & Gómez Vilchez, Jonatan J. & Nijs, Wouter & Thiel, Christian & Faaij, André, 2019. "Soft-linking of a behavioral model for transport with energy system cost optimization applied to hydrogen in EU," Renewable and Sustainable Energy Reviews, Elsevier, vol. 115(C).
    6. Palmer, J. & Sorda, G. & Madlener, R., 2015. "Modeling the diffusion of residential photovoltaic systems in Italy: An agent-based simulation," Technological Forecasting and Social Change, Elsevier, vol. 99(C), pages 106-131.
    7. Albert Faber & Koen Frenken, 2008. "Models in evolutionary economics and environmental policy: Towards an evolutionary environmental economics," Innovation Studies Utrecht (ISU) working paper series 08-15, Utrecht University, Department of Innovation Studies, revised Apr 2008.
    8. Robinson, Scott A. & Rai, Varun, 2015. "Determinants of spatio-temporal patterns of energy technology adoption: An agent-based modeling approach," Applied Energy, Elsevier, vol. 151(C), pages 273-284.
    9. Dumas, Marion & Rising, James & Urpelainen, Johannes, 2016. "Political competition and renewable energy transitions over long time horizons: A dynamic approach," Ecological Economics, Elsevier, vol. 124(C), pages 175-184.
    10. Guido Ala & Gabriella Di Filippo & Fabio Viola & Graziella Giglia & Antonino Imburgia & Pietro Romano & Vincenzo Castiglia & Filippo Pellitteri & Giuseppe Schettino & Rosario Miceli, 2020. "Different Scenarios of Electric Mobility: Current Situation and Possible Future Developments of Fuel Cell Vehicles in Italy," Sustainability, MDPI, vol. 12(2), pages 1-22, January.
    11. Jeroen Bergh, 2007. "Evolutionary thinking in environmental economics," Journal of Evolutionary Economics, Springer, vol. 17(5), pages 521-549, October.
    12. Saljooghi, Saeed & Safisamghabadib, Azamdokht, 2016. "Analyzing Semiconductor component's market sales data to create an Expert Fuzzy inference system," MPRA Paper 79846, University Library of Munich, Germany.
    13. Kaufmann, Peter & Stagl, Sigrid & Franks, Daniel W., 2009. "Simulating the diffusion of organic farming practices in two New EU Member States," Ecological Economics, Elsevier, vol. 68(10), pages 2580-2593, August.
    14. Martin Zsifkovits & Markus Günther, 2015. "Simulating resistances in innovation diffusion over multiple generations: an agent-based approach for fuel-cell vehicles," Central European Journal of Operations Research, Springer;Slovak Society for Operations Research;Hungarian Operational Research Society;Czech Society for Operations Research;Österr. Gesellschaft für Operations Research (ÖGOR);Slovenian Society Informatika - Section for Operational Research;Croatian Operational Research Society, vol. 23(2), pages 501-522, June.
    15. Hossein Sabzian & Mohammad Ali Shafia & Mehdi Ghazanfari & Ali Bonyadi Naeini, 2020. "Modeling the Adoption and Diffusion of Mobile Telecommunications Technologies in Iran: A Computational Approach Based on Agent-Based Modeling and Social Network Theory," Sustainability, MDPI, vol. 12(7), pages 1-36, April.
    16. Köhler, Jonathan & Whitmarsh, Lorraine & Nykvist, Björn & Schilperoord, Michel & Bergman, Noam & Haxeltine, Alex, 2009. "A transitions model for sustainable mobility," Ecological Economics, Elsevier, vol. 68(12), pages 2985-2995, October.
    17. Y. Li & C.J.M. Kool & P.J. Engelen, 2016. "Hydrogen-Fuel Infrastructure Investment with Endogenous Demand: A Real Options Approach," Working Papers 16-12, Utrecht School of Economics.
    18. Esteban Lopez-Arboleda & Alfonso T. Sarmiento & Laura M. Cardenas, 2019. "Systematic Review of Integrated Sustainable Transportation Models for Electric Passenger Vehicle Diffusion," Sustainability, MDPI, vol. 11(9), pages 1-19, April.
    19. Ye Li & Clemens Kool & Peter-Jan Engelen, 2020. "Analyzing the Business Case for Hydrogen-Fuel Infrastructure Investments with Endogenous Demand in The Netherlands: A Real Options Approach," Sustainability, MDPI, vol. 12(13), pages 1-22, July.
    20. repec:hal:spmain:info:hdl:2441/1nlv566svi86iqtetenms15tc4 is not listed on IDEAS
    21. Lee, Duk Hee & Park, Sang Yong & Kim, Jong Wook & Lee, Seong Kon, 2013. "Analysis on the feedback effect for the diffusion of innovative technologies focusing on the green car," Technological Forecasting and Social Change, Elsevier, vol. 80(3), pages 498-509.

    More about this item

    Keywords

    Emission reduction potential; Road transportation; Natural gas vehicles; Abatement costs; Low emission mobility; Alternative fuels;
    All these keywords.

    JEL classification:

    • L92 - Industrial Organization - - Industry Studies: Transportation and Utilities - - - Railroads and Other Surface Transportation
    • O33 - Economic Development, Innovation, Technological Change, and Growth - - Innovation; Research and Development; Technological Change; Intellectual Property Rights - - - Technological Change: Choices and Consequences; Diffusion Processes
    • Q41 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Energy - - - Demand and Supply; Prices
    • Q54 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Environmental Economics - - - Climate; Natural Disasters and their Management; Global Warming

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ris:ewikln:2011_014. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sabine Williams (email available below). General contact details of provider: https://edirc.repec.org/data/ewikode.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.