IDEAS home Printed from https://ideas.repec.org/p/rff/dpaper/dp-11-15.html
   My bibliography  Save this paper

Carbon Neutrality and Bioenergy: A Zero-Sum Game?

Author

Listed:
  • Sedjo, Roger A.

    (Resources for the Future)

Abstract

Biomass, a renewable energy source, has been viewed as “carbon neutral”—that is, its use as energy is presumed not to release net carbon dioxide. However, this assumption of carbon neutrality has recently been challenged. In 2010 two letters were sent to the Congress by eminent scientists examining the merits—or demerits—of biomass for climate change mitigation. The first, from about 90 scientists (to Nancy Pelosi and Harry Reid, from W.H. Schlesinger et al. May 17, 2010), questioned the treatment of all biomass energy as carbon neutral, arguing that it could undermine legislative emissions reduction goals. The second letter, submitted by more than 100 forest scientists (to Barbara Boxer et al. from Bruce Lippke et al. July 20, 2010), expressed concern over equating biogenic carbon emissions with fossil fuel emissions, as is contemplated in the Environmental Protection Agency’s Tailoring Rule. It argued that an approach focused on smokestack emissions, independent of the feedstocks, would encourage further fossil fuel energy production, to the long-term detriment of the atmosphere. This paper attempts to clarify and, to the extent possible, resolve these differences.

Suggested Citation

  • Sedjo, Roger A., 2011. "Carbon Neutrality and Bioenergy: A Zero-Sum Game?," RFF Working Paper Series dp-11-15, Resources for the Future.
  • Handle: RePEc:rff:dpaper:dp-11-15
    as

    Download full text from publisher

    File URL: http://www.rff.org/RFF/documents/RFF-DP-11-15.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Brent Sohngen & Robert Mendelsohn & Roger Sedjo, 1999. "Forest Management, Conservation, and Global Timber Markets," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 81(1), pages 1-13.
    2. Ralph Alig & Darius Adams & Bruce McCarl & J. Callaway & Steven Winnett, 1997. "Assessing effects of mitigation strategies for global climate change with an intertemporal model of the U.S. forest and agriculture sectors," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 9(3), pages 259-274, April.
    3. Burton, Diana M. & McCarl, Bruce A. & de Sousa, Claudio N.M. & Adams, Darius M. & Alig, Ralph J. & Winnett, Steven M., 1997. "Economic Impacts Of Climate Change On Southern Forests," Faculty Paper Series 24002, Texas A&M University, Department of Agricultural Economics.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Motavasseli, Ali, 2016. "Essays in environmental policy and household economics," Other publications TiSEM b32e287e-169b-4e89-9878-1, Tilburg University, School of Economics and Management.
    2. Jussi Lintunen & Jussi Uusivuori, 2014. "On The Economics of Forest Carbon: Renewable and Carbon Neutral But Not Emission Free," Working Papers 2014.13, Fondazione Eni Enrico Mattei.
    3. Favero, Alice & Mendelsohn, Robert & Sohngen, Brent, 2016. "Carbon Storage and Bioenergy: Using Forests for Climate Mitigation," MITP: Mitigation, Innovation and Transformation Pathways 232215, Fondazione Eni Enrico Mattei (FEEM).
    4. Michetti, Melania & Parrado, Ramiro, 2012. "Improving Land-use modelling within CGE to assess Forest-based Mitigation Potential and Costs," Climate Change and Sustainable Development 122862, Fondazione Eni Enrico Mattei (FEEM).
    5. Geng, Aixin & Yang, Hongqiang & Chen, Jiaxin & Hong, Yinxing, 2017. "Review of carbon storage function of harvested wood products and the potential of wood substitution in greenhouse gas mitigation," Forest Policy and Economics, Elsevier, vol. 85(P1), pages 192-200.
    6. Kim Pingoud & Tommi Ekholm & Ilkka Savolainen, 2012. "Global warming potential factors and warming payback time as climate indicators of forest biomass use," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 17(4), pages 369-386, April.
    7. van Kooten, G. Cornelis, 2017. "The Policy Challenge of Creating Forest Offset Credits: A Case Study from the Interior of British Columbia," Working Papers 253887, University of Victoria, Resource Economics and Policy.
    8. Sedjo, ROger A., 2013. "Comparative Life Cycle Assessments: Carbon Neutrality and Wood Biomass Energy," RFF Working Paper Series dp-13-11, Resources for the Future.
    9. Alice Favero & Robert Mendelsohn, 2014. "Using Markets for Woody Biomass Energy to Sequester Carbon in Forests," Journal of the Association of Environmental and Resource Economists, University of Chicago Press, vol. 1(1), pages 75-95.
    10. Lintunen, Jussi & Uusivuori, Jussi, 2016. "On the economics of forests and climate change: Deriving optimal policies," Journal of Forest Economics, Elsevier, vol. 24(C), pages 130-156.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ovando, Paola & Caparrós, Alejandro, 2009. "Land use and carbon mitigation in Europe: A survey of the potentials of different alternatives," Energy Policy, Elsevier, vol. 37(3), pages 992-1003, March.
    2. Edwin Van Der Werf & Sonja Peterson, 2009. "Modeling linkages between climate policy and land use: an overview," Agricultural Economics, International Association of Agricultural Economists, vol. 40(5), pages 507-517, September.
    3. Gan, Jianbang & McCarl, Bruce A., 2007. "Measuring transnational leakage of forest conservation," Ecological Economics, Elsevier, vol. 64(2), pages 423-432, December.
    4. Baker, J.S. & Wade, C.M. & Sohngen, B.L. & Ohrel, S. & Fawcett, A.A., 2019. "Potential complementarity between forest carbon sequestration incentives and biomass energy expansion," Energy Policy, Elsevier, vol. 126(C), pages 391-401.
    5. Monge, Juan J. & Bryant, Henry L. & Gan, Jianbang & Richardson, James W., 2016. "Land use and general equilibrium implications of a forest-based carbon sequestration policy in the United States," Ecological Economics, Elsevier, vol. 127(C), pages 102-120.
    6. Reijnders, L., 2009. "Are forestation, bio-char and landfilled biomass adequate offsets for the climate effects of burning fossil fuels?," Energy Policy, Elsevier, vol. 37(8), pages 2839-2841, August.
    7. Alice Favero & Robert Mendelsohn, 2013. "Evaluating the Global Role of Woody Biomass as a Mitigation Strategy," Working Papers 2013.37, Fondazione Eni Enrico Mattei.
    8. Jung, Martina, 2003. "The Role of Forestry Sinks in the CDM - Analysing the Effects of Policy Decisions on the Carbon Market," Discussion Paper Series 26293, Hamburg Institute of International Economics.
    9. Michetti, Melania & Parrado, Ramiro, 2012. "Improving Land-use modelling within CGE to assess Forest-based Mitigation Potential and Costs," Climate Change and Sustainable Development 122862, Fondazione Eni Enrico Mattei (FEEM).
    10. Favero, Alice & Mendelsohn, Robert & Sohngen, Brent, 2016. "Carbon Storage and Bioenergy: Using Forests for Climate Mitigation," MITP: Mitigation, Innovation and Transformation Pathways 232215, Fondazione Eni Enrico Mattei (FEEM).
    11. Sedjo, Roger & Sohngen, Brent & Mendelsohn, Robert, 2001. "Estimating Carbon Supply Curves for Global Forests and Other Land Uses," RFF Working Paper Series dp-01-19, Resources for the Future.
    12. HUBERT Marie-Hélène & MOREAUX Michel, 2007. "The challenge of meeting the future food needs," LERNA Working Papers 07.17.238, LERNA, University of Toulouse.
    13. Sohngen, Brent & Favero, Alice & Jin, Yufang & Huang, Yuhan, 2018. "Global cost estimates of forest climate mitigation with albedo: A new policy approach," 2018 Annual Meeting, August 5-7, Washington, D.C. 274307, Agricultural and Applied Economics Association.
    14. Miguel Cantillo, 2015. "Dynamic Investment with Adverse Selection and Moral Hazard," Working Papers 201501, Universidad de Costa Rica, revised Mar 2015.
    15. Chen, Nengwang & Li, Huancheng & Wang, Lihong, 2009. "A GIS-based approach for mapping direct use value of ecosystem services at a county scale: Management implications," Ecological Economics, Elsevier, vol. 68(11), pages 2768-2776, September.
    16. Heng-Chi Lee & Bruce McCarl & Uwe Schneider & Chi-Chung Chen, 2007. "Leakage and Comparative Advantage Implications of Agricultural Participation in Greenhouse Gas Emission Mitigation," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 12(4), pages 471-494, May.
    17. Tavoni, Massimo & Sohngen, Brent & Bosetti, Valentina, 2007. "Forestry and the carbon market response to stabilize climate," Energy Policy, Elsevier, vol. 35(11), pages 5346-5353, November.
    18. Markowski-Lindsay, Marla & Stevens, Thomas & Kittredge, David B. & Butler, Brett J. & Catanzaro, Paul & Dickinson, Brenton J., 2011. "Barriers to Massachusetts forest landowner participation in carbon markets," Ecological Economics, Elsevier, vol. 71(C), pages 180-190.
    19. Kim, Sei Jin & Baker, Justin S. & Sohngen, Brent L. & Shell, Michael, 2018. "Cumulative global forest carbon implications of regional bioenergy expansion policies," Resource and Energy Economics, Elsevier, vol. 53(C), pages 198-219.
    20. Daigneault, Adam J. & Sohngen, Brent L. & Sedjo, Roger, 2020. "Carbon and market effects of U.S. forest taxation policy," Ecological Economics, Elsevier, vol. 178(C).

    More about this item

    Keywords

    carbon neutrality; biomass; wood biomass; bioenergy; carbon dioxide; feedstock; energy; alternative fuel; rational expectations;
    All these keywords.

    JEL classification:

    • Q2 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Renewable Resources and Conservation
    • Q23 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Renewable Resources and Conservation - - - Forestry
    • Q4 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Energy
    • Q42 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Energy - - - Alternative Energy Sources
    • Q5 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Environmental Economics

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:rff:dpaper:dp-11-15. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Resources for the Future (email available below). General contact details of provider: https://edirc.repec.org/data/rffffus.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.