IDEAS home Printed from https://ideas.repec.org/p/rff/dpaper/dp-10-53.html
   My bibliography  Save this paper

Federal Policies for Renewable Electricity: Impacts and Interactions

Author

Listed:
  • Palmer, Karen

    (Resources for the Future)

  • Paul, Anthony

    (Resources for the Future)

  • Woerman, Matt

Abstract

Three types of policies that are prominent in the federal debate over addressing greenhouse gas emissions in the United States are a cap-and-trade program (CTP) on emissions, a renewable portfolio standard (RPS) for electricity production, and tax credits for renewable electricity producers. Each of these policies would have different consequences, and combinations of these policies could induce interactions yielding a whole that is not the sum of its parts. This paper utilizes the Haiku electricity market model to evaluate the economic and technology outcomes, climate benefits, and cost-effectiveness of three such policies and all possible combinations of the policies. A central finding is that the carbon dioxide (CO2) emissions reductions from CTP can be significantly greater than those from the other policies, even for similar levels of renewable electricity production, since of the three policies, CTP is the only one that distinguishes electricity generated by coal and natural gas. It follows that CTP is the most cost-effective among these approaches at reducing CO2 emissions. An alternative compliance payment mechanism in an RPS program could substantially affect renewables penetration, and the electricity price effects of the policies hinge partly on the regulatory structure of electricity markets, which varies across the country.

Suggested Citation

  • Palmer, Karen & Paul, Anthony & Woerman, Matt, 2011. "Federal Policies for Renewable Electricity: Impacts and Interactions," RFF Working Paper Series dp-10-53, Resources for the Future.
  • Handle: RePEc:rff:dpaper:dp-10-53
    as

    Download full text from publisher

    File URL: http://www.rff.org/RFF/documents/RFF-DP-10-53.pdf
    Download Restriction: no
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Fischer, Carolyn & Preonas, Louis, 2010. "Combining Policies for Renewable Energy: Is the Whole Less Than the Sum of Its Parts?," International Review of Environmental and Resource Economics, now publishers, vol. 4(1), pages 51-92, June.
    2. Palmer, Karen & Burtraw, Dallas, 2005. "Cost-effectiveness of renewable electricity policies," Energy Economics, Elsevier, vol. 27(6), pages 873-894, November.
    3. Wiser, Ryan & Bolinger, Mark, 2007. "Can deployment of renewable energy put downward pressure on natural gas prices?," Energy Policy, Elsevier, vol. 35(1), pages 295-306, January.
    4. Carolyn Fischer, 2010. "Renewable Portfolio Standards: When Do They Lower Energy Prices?," The Energy Journal, International Association for Energy Economics, vol. 0(Number 1), pages 101-120.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Blumsack, Seth & Xu, Jianhua, 2011. "Spatial variation of emissions impacts due to renewable energy siting decisions in the Western U.S. under high-renewable penetration scenarios," Energy Policy, Elsevier, vol. 39(11), pages 6962-6971.
    2. Kalkuhl, Matthias & Edenhofer, Ottmar & Lessmann, Kai, 2013. "Renewable energy subsidies: Second-best policy or fatal aberration for mitigation?," Resource and Energy Economics, Elsevier, vol. 35(3), pages 217-234.
    3. Amigues, Jean-Pierre & Chakravorty, Ujjayant & Lafforgue, Gilles & Moreaux, Michel, 2012. "Renewable Portfolio Standards and implicit tax-subsidy schemes: Structural differences induced by quantity and proportional mandates," LERNA Working Papers 12.02.359, LERNA, University of Toulouse.
    4. Arild Heimvik & Eirik S. Amundsen, 2019. "Prices vs. percentages: use of tradable green certificates as an instrument of greenhouse gas mitigation," CESifo Working Paper Series 7521, CESifo.
    5. Aune, Finn Roar & Dalen, Hanne Marit & Hagem, Cathrine, 2012. "Implementing the EU renewable target through green certificate markets," Energy Economics, Elsevier, vol. 34(4), pages 992-1000.
    6. Morris, Adele C. & Nivola, Pietro S. & Schultze, Charles L., 2012. "Clean energy: Revisiting the challenges of industrial policy," Energy Economics, Elsevier, vol. 34(S1), pages 34-42.
    7. Steve Charnovitz & Carolyn Fischer, 2014. "Canada – Renewable Energy: Implications for WTO Law on Green and Not-so-Green Subsidies," Working Papers 2014.94, Fondazione Eni Enrico Mattei.
    8. Lecuyer, Oskar & Quirion, Philippe, 2013. "Can uncertainty justify overlapping policy instruments to mitigate emissions?," Ecological Economics, Elsevier, vol. 93(C), pages 177-191.
    9. Jean-Pierre Amigues & Ujjayant Chakravorty & Gilles Lafforgue & Michel Moreaux, 2022. "Comparing Volume and Blend Renewable Energy Mandates under a Carbon Budget," Annals of Economics and Statistics, GENES, issue 147, pages 51-78.
    10. Fridolfsson, Sven-Olof & Tangerås, Thomas P., 2013. "A reexamination of renewable electricity policy in Sweden," Energy Policy, Elsevier, vol. 58(C), pages 57-63.
    11. Considine, Timothy J. & Manderson, Edward J.M., 2015. "The cost of solar-centric renewable portfolio standards and reducing coal power generation using Arizona as a case study," Energy Economics, Elsevier, vol. 49(C), pages 402-419.
    12. Francisco Munoz & Enzo Sauma & Benjamin Hobbs, 2013. "Approximations in power transmission planning: implications for the cost and performance of renewable portfolio standards," Journal of Regulatory Economics, Springer, vol. 43(3), pages 305-338, June.
    13. Fischer, Carolyn & Preonas, Louis, 2010. "Combining Policies for Renewable Energy: Is the Whole Less Than the Sum of Its Parts?," International Review of Environmental and Resource Economics, now publishers, vol. 4(1), pages 51-92, June.
    14. Fischer, Carolyn & Greaker, Mads & Rosendahl, Knut Einar, 2018. "Strategic technology policy as a supplement to renewable energy standards," Resource and Energy Economics, Elsevier, vol. 51(C), pages 84-98.
    15. Doda, Baran & Fankhauser, Sam, 2020. "Climate policy and power producers: The distribution of pain and gain," Energy Policy, Elsevier, vol. 138(C).
    16. Jasper Meya & Paul Neetzow, 2019. "Renewable energy policies in federal government systems," Working Papers V-423-19, University of Oldenburg, Department of Economics, revised Jul 2019.
    17. Böhringer, Christoph & Keller, Andreas & van der Werf, Edwin, 2013. "Are green hopes too rosy? Employment and welfare impacts of renewable energy promotion," Energy Economics, Elsevier, vol. 36(C), pages 277-285.
    18. Florian Habermacher & Paul Lehmann, 2017. "Commitment vs. Discretion in Climate and Energy Policy," CESifo Working Paper Series 6355, CESifo.
    19. Heimvik, Arild & Amundsen, Eirik S., 2019. "Prices vs. percentages: Use of tradable green certificates as an instrument of greenhouse gas mitigation," Working Papers in Economics 1/19, University of Bergen, Department of Economics.
    20. Ino, Hiroaki & Matsumura, Toshihiro, 2021. "Promoting green or restricting gray? An analysis of green portfolio standards," Economics Letters, Elsevier, vol. 198(C).

    More about this item

    Keywords

    renewable portfolio standard; renewable energy credits; cap-and-trade; climate policy;
    All these keywords.

    JEL classification:

    • Q42 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Energy - - - Alternative Energy Sources
    • Q54 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Environmental Economics - - - Climate; Natural Disasters and their Management; Global Warming
    • Q58 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Environmental Economics - - - Environmental Economics: Government Policy

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:rff:dpaper:dp-10-53. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Resources for the Future (email available below). General contact details of provider: https://edirc.repec.org/data/rffffus.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.