IDEAS home Printed from https://ideas.repec.org/p/rff/dpaper/dp-02-68.html
   My bibliography  Save this paper

Prospects for Carbon Capture and Storage Technologies

Author

Listed:
  • Newell, Richard

    (Resources for the Future)

  • Anderson, Soren

Abstract

Carbon capture and storage (CCS) technologies remove carbon dioxide from flue gases for storage in geologic formations or the ocean. We find that CCS is technically feasible and economically attractive within the range of carbon policies discussed domestically and internationally. Current costs are about $200 to $250 per ton of carbon, although costs are sensitive to fuel prices and other assumptions and could be reduced significantly through technical improvements. Near-term prospects favor CCS for certain industrial sources and electric power plants, with storage in depleted oil and gas reservoirs. Deep aquifers may provide an attractive longer-term storage option, whereas ocean storage poses greater technical and environmental uncertainty. Vast quantities of economically recoverable fossil fuels, sizable political obstacles to their abandonment, and inherent delay associated with developing alternative energy sources suggest that CCS should be seriously considered in the portfolio of options for addressing climate change, alongside energy efficiency and carbon-free energy.

Suggested Citation

  • Newell, Richard & Anderson, Soren, 2003. "Prospects for Carbon Capture and Storage Technologies," RFF Working Paper Series dp-02-68, Resources for the Future.
  • Handle: RePEc:rff:dpaper:dp-02-68
    as

    Download full text from publisher

    File URL: http://www.rff.org/RFF/documents/RFF-DP-02-68.pdf
    Download Restriction: no
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. McFarland, J. R. & Reilly, J. M. & Herzog, H. J., 2004. "Representing energy technologies in top-down economic models using bottom-up information," Energy Economics, Elsevier, vol. 26(4), pages 685-707, July.
    2. Huesemann, Michael H., 2001. "Can pollution problems be effectively solved by environmental science and technology? An analysis of critical limitations," Ecological Economics, Elsevier, vol. 37(2), pages 271-287, May.
    3. Blok, K. & Williams, R.H. & Katofsky, R.E. & Hendriks, C.A., 1997. "Hydrogen production from natural gas, sequestration of recovered CO2 in depleted gas wells and enhanced natural gas recovery," Energy, Elsevier, vol. 22(2), pages 161-168.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hwang Won-Sik & Oh Inha & Lee Jeong-Dong, 2014. "The Impact of Korea’s Green Growth Policies on the National Economy and Environment," The B.E. Journal of Economic Analysis & Policy, De Gruyter, vol. 14(4), pages 1-30, October.
    2. Abdirizak Omar & Mouadh Addassi & Volker Vahrenkamp & Hussein Hoteit, 2021. "Co-Optimization of CO 2 Storage and Enhanced Gas Recovery Using Carbonated Water and Supercritical CO 2," Energies, MDPI, vol. 14(22), pages 1-21, November.
    3. Wissema, Wiepke & Dellink, Rob, 2007. "AGE analysis of the impact of a carbon energy tax on the Irish economy," Ecological Economics, Elsevier, vol. 61(4), pages 671-683, March.
    4. Karplus, Valerie J. & Paltsev, Sergey & Babiker, Mustafa & Reilly, John M., 2013. "Should a vehicle fuel economy standard be combined with an economy-wide greenhouse gas emissions constraint? Implications for energy and climate policy in the United States," Energy Economics, Elsevier, vol. 36(C), pages 322-333.
    5. Newell, Richard G. & Jaffe, Adam B. & Stavins, Robert N., 2006. "The effects of economic and policy incentives on carbon mitigation technologies," Energy Economics, Elsevier, vol. 28(5-6), pages 563-578, November.
    6. Ying Fan & Jian-Ling Jiao & Qiao-Mei Liang & Zhi-Yong Han & Yi-Ming Wei, 2007. "The impact of rising international crude oil price on China's economy: an empirical analysis with CGE model," International Journal of Global Energy Issues, Inderscience Enterprises Ltd, vol. 27(4), pages 404-424.
    7. Wang, Qiuying & Zhu, Xiaomei & Sun, Bing & Li, Zhi & Liu, Jinglin, 2022. "Hydrogen production from methane via liquid phase microwave plasma: A deoxidation strategy," Applied Energy, Elsevier, vol. 328(C).
    8. Ron SANDS & Katja SCHUMACHER, 2008. "Decomposition Analysis and Climate Policy in a General Equilibrium Model of Germany," EcoMod2008 23800124, EcoMod.
    9. Tapia-Ahumada, Karen & Octaviano, Claudia & Rausch, Sebastian & Pérez-Arriaga, Ignacio, 2015. "Modeling intermittent renewable electricity technologies in general equilibrium models," Economic Modelling, Elsevier, vol. 51(C), pages 242-262.
    10. Wang, Yangyang & Liu, Yangyang & Xu, Zaifeng & Yin, Kexin & Zhou, Yaru & Zhang, Jifu & Cui, Peizhe & Ma, Shinan & Wang, Yinglong & Zhu, Zhaoyou, 2024. "A review on renewable energy-based chemical engineering design and optimization," Renewable and Sustainable Energy Reviews, Elsevier, vol. 189(PB).
    11. Qi, Tianyu & Zhang, Xiliang & Karplus, Valerie J., 2014. "The energy and CO2 emissions impact of renewable energy development in China," Energy Policy, Elsevier, vol. 68(C), pages 60-69.
    12. Barker, Terry & Ekins, Paul & Foxon, Tim, 2007. "Macroeconomic effects of efficiency policies for energy-intensive industries: The case of the UK Climate Change Agreements, 2000-2010," Energy Economics, Elsevier, vol. 29(4), pages 760-778, July.
    13. Xu, Zhongming & Fang, Chenhao & Ma, Tieju, 2020. "Analysis of China’s olefin industry using a system optimization model considering technological learning and energy consumption reduction," Energy, Elsevier, vol. 191(C).
    14. Willenbockel, Dirk, 2017. "Macroeconomic Effects of a Low-Carbon Electricity Transition in Kenya and Ghana: An Exploratory Dynamic General Equilibrium Analysis," MPRA Paper 78070, University Library of Munich, Germany.
    15. Bibas, Ruben & Méjean, Aurélie & Hamdi-Cherif, Meriem, 2015. "Energy efficiency policies and the timing of action: An assessment of climate mitigation costs," Technological Forecasting and Social Change, Elsevier, vol. 90(PA), pages 137-152.
    16. Halkos, George, 2014. "The Economics of Climate Change Policy: Critical review and future policy directions," MPRA Paper 56841, University Library of Munich, Germany.
    17. James Tansey, 2006. "Industrial Ecology and Planning: Assessing and Socially Embedding Green Technological Systems," Environment and Planning B, , vol. 33(3), pages 381-392, June.
    18. Otto, Vincent M. & Reilly, John, 2008. "Directed technical change and the adoption of CO2 abatement technology: The case of CO2 capture and storage," Energy Economics, Elsevier, vol. 30(6), pages 2879-2898, November.
    19. Peters, Jeffrey C. & Hertel, Thomas W., 2016. "The database–modeling nexus in integrated assessment modeling of electric power generation," Energy Economics, Elsevier, vol. 56(C), pages 107-116.
    20. Christoph Lieb, 2004. "The Environmental Kuznets Curve and Flow versus Stock Pollution: The Neglect of Future Damages," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 29(4), pages 483-506, December.

    More about this item

    Keywords

    carbon; capture; storage; sequestration; climate change; technology;
    All these keywords.

    JEL classification:

    • Q30 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Nonrenewable Resources and Conservation - - - General
    • Q40 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Energy - - - General
    • O30 - Economic Development, Innovation, Technological Change, and Growth - - Innovation; Research and Development; Technological Change; Intellectual Property Rights - - - General

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:rff:dpaper:dp-02-68. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Resources for the Future (email available below). General contact details of provider: https://edirc.repec.org/data/rffffus.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.