IDEAS home Printed from https://ideas.repec.org/p/pra/mprapa/89896.html
   My bibliography  Save this paper

Time-varying congestion tolling and urban spatial structure

Author

Listed:
  • Takayama, Yuki

Abstract

This study develops a model in which heterogeneous commuters choose their residential locations and departure times from home in a monocentric city with a bottleneck located at the entrance to the central business district (CBD). We systematically analyze the model by utilizing the properties of complementarity problems. This analysis shows that, although expanding the capacity of the bottleneck generates a Pareto improvement when commuters do not relocate, it can lead to an unbalanced distribution of benefits among commuters: commuters residing closer to the CBD gain and commuters residing farther from the CBD lose. Furthermore, we reveal that an optimal time-varying congestion toll alters the urban spatial structure. We then demonstrate through examples that (a) if rich commuters are flexible, congestion tolling makes cities denser and more compact; (b) if rich commuters are highly inflexible, tolling causes cities to become less dense and to spatially expand; and (c) in both cases, imposing a toll helps rich commuters but hurts poor commuters.

Suggested Citation

  • Takayama, Yuki, 2018. "Time-varying congestion tolling and urban spatial structure," MPRA Paper 89896, University Library of Munich, Germany.
  • Handle: RePEc:pra:mprapa:89896
    as

    Download full text from publisher

    File URL: https://mpra.ub.uni-muenchen.de/89896/1/MPRA_paper_89896.pdf
    File Function: original version
    Download Restriction: no

    File URL: https://mpra.ub.uni-muenchen.de/90395/1/MPRA_paper_90395.pdf
    File Function: revised version
    Download Restriction: no

    File URL: https://mpra.ub.uni-muenchen.de/100453/1/MPRA_paper_100453.pdf
    File Function: revised version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Takayama, Yuki, 2015. "Bottleneck congestion and distribution of work start times: The economics of staggered work hours revisited," Transportation Research Part B: Methodological, Elsevier, vol. 81(P3), pages 830-847.
    2. Alex Anas & Richard Arnott & Kenneth A. Small, 1998. "Urban Spatial Structure," Journal of Economic Literature, American Economic Association, vol. 36(3), pages 1426-1464, September.
    3. Mogens Fosgerau & Kenneth Small, 2017. "Endogenous Scheduling Preferences And Congestion," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 58, pages 585-615, May.
    4. Ross, Stephen L. & Yinger, John, 2000. "Timing Equilibria in an Urban Model with Congestion," Journal of Urban Economics, Elsevier, vol. 47(3), pages 390-413, May.
    5. Fujita,Masahisa, 1991. "Urban Economic Theory," Cambridge Books, Cambridge University Press, number 9780521396455.
    6. Harris, Richard & Wildasin, David, 1985. "An alternative approach to aggregate surplus analysis," Journal of Public Economics, Elsevier, vol. 26(3), pages 289-302, April.
    7. Tseng, Yin-Yen & Verhoef, Erik T., 2008. "Value of time by time of day: A stated-preference study," Transportation Research Part B: Methodological, Elsevier, vol. 42(7-8), pages 607-618, August.
    8. Robin Lindsey, C. & van den Berg, Vincent A.C. & Verhoef, Erik T., 2012. "Step tolling with bottleneck queuing congestion," Journal of Urban Economics, Elsevier, vol. 72(1), pages 46-59.
    9. Arnott, Richard & de Palma, Andre & Lindsey, Robin, 1993. "A Structural Model of Peak-Period Congestion: A Traffic Bottleneck with Elastic Demand," American Economic Review, American Economic Association, vol. 83(1), pages 161-179, March.
    10. Cheung, Man-Wah & Lahkar, Ratul, 2018. "Nonatomic potential games: the continuous strategy case," Games and Economic Behavior, Elsevier, vol. 108(C), pages 341-362.
    11. Fosgerau, Mogens & Lindsey, Robin, 2013. "Trip-timing decisions with traffic incidents," Regional Science and Urban Economics, Elsevier, vol. 43(5), pages 764-782.
    12. Wheaton, William C., 1998. "Land Use and Density in Cities with Congestion," Journal of Urban Economics, Elsevier, vol. 43(2), pages 258-272, March.
    13. Robin Lindsey, 2004. "Existence, Uniqueness, and Trip Cost Function Properties of User Equilibrium in the Bottleneck Model with Multiple User Classes," Transportation Science, INFORMS, vol. 38(3), pages 293-314, August.
    14. Fosgerau, Mogens & de Palma, André, 2012. "Congestion in a city with a central bottleneck," Journal of Urban Economics, Elsevier, vol. 71(3), pages 269-277.
    15. Takayama, Yuki & Kuwahara, Masao, 2017. "Bottleneck congestion and residential location of heterogeneous commuters," Journal of Urban Economics, Elsevier, vol. 100(C), pages 65-79.
    16. Vickrey, William S, 1969. "Congestion Theory and Transport Investment," American Economic Review, American Economic Association, vol. 59(2), pages 251-260, May.
    17. Arnott, Richard & de Palma, Andre & Lindsey, Robin, 1990. "Economics of a bottleneck," Journal of Urban Economics, Elsevier, vol. 27(1), pages 111-130, January.
    18. Hall, Jonathan D., 2018. "Pareto improvements from Lexus Lanes: The effects of pricing a portion of the lanes on congested highways," Journal of Public Economics, Elsevier, vol. 158(C), pages 113-125.
    19. van den Berg, Vincent & Verhoef, Erik T., 2011. "Congestion tolling in the bottleneck model with heterogeneous values of time," Transportation Research Part B: Methodological, Elsevier, vol. 45(1), pages 60-78, January.
    20. Gubins, Sergejs & Verhoef, Erik T., 2014. "Dynamic bottleneck congestion and residential land use in the monocentric city," Journal of Urban Economics, Elsevier, vol. 80(C), pages 51-61.
    21. Duranton, Gilles & Puga, Diego, 2015. "Urban Land Use," Handbook of Regional and Urban Economics, in: Gilles Duranton & J. V. Henderson & William C. Strange (ed.), Handbook of Regional and Urban Economics, edition 1, volume 5, chapter 0, pages 467-560, Elsevier.
    22. Arnott, R. & de Palma, A. & Lindsey, R., 1990. "Departure time and route choice for the morning commute," Transportation Research Part B: Methodological, Elsevier, vol. 24(3), pages 209-228, June.
    23. Akamatsu, Takashi & Wada, Kentaro & Hayashi, Shunsuke, 2015. "The corridor problem with discrete multiple bottlenecks," Transportation Research Part B: Methodological, Elsevier, vol. 81(P3), pages 808-829.
    24. Laih, Chen-Hsiu, 1994. "Queueing at a bottleneck with single- and multi-step tolls," Transportation Research Part A: Policy and Practice, Elsevier, vol. 28(3), pages 197-208, May.
    25. Se-il Mun & Makoto Yonekawa, 2006. "Flextime, Traffic Congestion and Urban Productivity," Journal of Transport Economics and Policy, University of Bath, vol. 40(3), pages 329-358, September.
    26. Fujita, Masahisa, 1985. "Existence and uniqueness of equilibrium and optimal land use : Boundary rent curve approach," Regional Science and Urban Economics, Elsevier, vol. 15(2), pages 295-324, June.
    27. Kanemoto, Yoshitsugu, 1980. "Theories of urban externalities," MPRA Paper 24614, University Library of Munich, Germany.
    28. Liu, Yang & Nie, Yu (Marco) & Hall, Jonathan, 2015. "A semi-analytical approach for solving the bottleneck model with general user heterogeneity," Transportation Research Part B: Methodological, Elsevier, vol. 71(C), pages 56-70.
    29. Gilles Duranton & J. V. Henderson & William C. Strange (ed.), 2015. "Handbook of Regional and Urban Economics," Handbook of Regional and Urban Economics, Elsevier, edition 1, volume 5, number 5.
    30. Arnott, Richard & de Palma, Andre & Lindsey, Robin, 1992. "Route choice with heterogeneous drivers and group-specific congestion costs," Regional Science and Urban Economics, Elsevier, vol. 22(1), pages 71-102, March.
    31. Glaeser, Edward L. & Kahn, Matthew E. & Rappaport, Jordan, 2008. "Why do the poor live in cities The role of public transportation," Journal of Urban Economics, Elsevier, vol. 63(1), pages 1-24, January.
    32. van den Berg, Vincent & Verhoef, Erik T., 2011. "Winning or losing from dynamic bottleneck congestion pricing?: The distributional effects of road pricing with heterogeneity in values of time and schedule delay," Journal of Public Economics, Elsevier, vol. 95(7-8), pages 983-992, August.
    33. Wheaton, William C, 1977. "Income and Urban Residence: An Analysis of Consumer Demand for Location," American Economic Review, American Economic Association, vol. 67(4), pages 620-631, September.
    34. Chris Hendrickson & George Kocur, 1981. "Schedule Delay and Departure Time Decisions in a Deterministic Model," Transportation Science, INFORMS, vol. 15(1), pages 62-77, February.
    35. Fosgerau, Mogens & Kim, Jinwon & Ranjan, Abhishek, 2018. "Vickrey meets Alonso: Commute scheduling and congestion in a monocentric city," Journal of Urban Economics, Elsevier, vol. 105(C), pages 40-53.
    36. Masao Kuwahara, 1990. "Equilibrium Queueing Patterns at a Two-Tandem Bottleneck during the Morning Peak," Transportation Science, INFORMS, vol. 24(3), pages 217-229, August.
    37. Small, Kenneth A, 1982. "The Scheduling of Consumer Activities: Work Trips," American Economic Review, American Economic Association, vol. 72(3), pages 467-479, June.
    38. Chen-Hsiu Laih, 2004. "Effects of the optimal step toll scheme on equilibrium commuter behaviour," Applied Economics, Taylor & Francis Journals, vol. 36(1), pages 59-81.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Takayama, Yuki, 2020. "Who gains and who loses from congestion pricing in a monocentric city with a bottleneck?," Economics of Transportation, Elsevier, vol. 24(C).
    2. Takayama, Yuki & Kuwahara, Masao, 2017. "Bottleneck congestion and residential location of heterogeneous commuters," Journal of Urban Economics, Elsevier, vol. 100(C), pages 65-79.
    3. Li, Zhi-Chun & Huang, Hai-Jun & Yang, Hai, 2020. "Fifty years of the bottleneck model: A bibliometric review and future research directions," Transportation Research Part B: Methodological, Elsevier, vol. 139(C), pages 311-342.
    4. Akamatsu, Takashi & Wada, Kentaro & Iryo, Takamasa & Hayashi, Shunsuke, 2021. "A new look at departure time choice equilibrium models with heterogeneous users," Transportation Research Part B: Methodological, Elsevier, vol. 148(C), pages 152-182.
    5. Kenneth Small, 2015. "The Bottleneck Model: An Assessment and Interpretation," Working Papers 141506, University of California-Irvine, Department of Economics.
    6. Chen, Hongyu & Liu, Yang & Nie, Yu (Marco), 2015. "Solving the step-tolled bottleneck model with general user heterogeneity," Transportation Research Part B: Methodological, Elsevier, vol. 81(P1), pages 210-229.
    7. Osawa, Minoru & Fu, Haoran & Akamatsu, Takashi, 2018. "First-best dynamic assignment of commuters with endogenous heterogeneities in a corridor network," Transportation Research Part B: Methodological, Elsevier, vol. 117(PB), pages 811-831.
    8. Chen, Hongyu & Nie, Yu (Marco) & Yin, Yafeng, 2015. "Optimal multi-step toll design under general user heterogeneity," Transportation Research Part B: Methodological, Elsevier, vol. 81(P3), pages 775-793.
    9. Fosgerau, Mogens & Kim, Jinwon, 2019. "Commuting and land use in a city with bottlenecks: Theory and evidence," Regional Science and Urban Economics, Elsevier, vol. 77(C), pages 182-204.
    10. Small, Kenneth A., 2015. "The bottleneck model: An assessment and interpretation," Economics of Transportation, Elsevier, vol. 4(1), pages 110-117.
    11. Li, Zhi-Chun & Lam, William H.K. & Wong, S.C., 2017. "Step tolling in an activity-based bottleneck model," Transportation Research Part B: Methodological, Elsevier, vol. 101(C), pages 306-334.
    12. Zhu, Tingting & Li, Yao & Long, Jiancheng, 2022. "Departure time choice equilibrium and tolling strategies for a bottleneck with continuous scheduling preference," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 159(C).
    13. Konagane, Joji & Kono, Tatsuhito, 2021. "Heterogeneous Households’ Choices of Departure Time and Residential Location in a Multiple-origin Single-destination Rail System: Market Equilibrium and the First-best Solution," MPRA Paper 108507, University Library of Munich, Germany.
    14. Braid, Ralph M., 2018. "Partial peak-load pricing of a transportation bottleneck with homogeneous and heterogeneous values of time," Economics of Transportation, Elsevier, vol. 16(C), pages 29-41.
    15. Mogens Fosgerau & André de Palma & Anders Karlstrom & Kenneth A. Small, 2012. "Trip timing and scheduling preferences," Working Papers hal-00742267, HAL.
    16. van den Berg, Vincent A.C., 2014. "Coarse tolling with heterogeneous preferences," Transportation Research Part B: Methodological, Elsevier, vol. 64(C), pages 1-23.
    17. Knockaert, Jasper & Verhoef, Erik T. & Rouwendal, Jan, 2016. "Bottleneck congestion: Differentiating the coarse charge," Transportation Research Part B: Methodological, Elsevier, vol. 83(C), pages 59-73.
    18. André de Palma & Zhi-Chun Li & De-Ping Yu, 2023. "An analytical model for residential location choices of heterogeneous households in a monocentric city with stochastic bottleneck congestion," THEMA Working Papers 2023-01, THEMA (THéorie Economique, Modélisation et Applications), Université de Cergy-Pontoise.
    19. Takayama, Yuki & Kuwahara, Masao, 2016. "Scheduling preferences, parking competition, and bottleneck congestion: A model of trip timing and parking location choices by heterogeneous commuters," MPRA Paper 68938, University Library of Munich, Germany.
    20. Akamatsu, Takashi & Wada, Kentaro & Iryo, Takamasa & Hayashi, Shunsuke, 2018. "Departure time choice equilibrium and optimal transport problems," MPRA Paper 90361, University Library of Munich, Germany.

    More about this item

    Keywords

    time-varying congestion toll; bottleneck congestion; urban spatial structure; heterogeneity;
    All these keywords.

    JEL classification:

    • D62 - Microeconomics - - Welfare Economics - - - Externalities
    • R21 - Urban, Rural, Regional, Real Estate, and Transportation Economics - - Household Analysis - - - Housing Demand
    • R41 - Urban, Rural, Regional, Real Estate, and Transportation Economics - - Transportation Economics - - - Transportation: Demand, Supply, and Congestion; Travel Time; Safety and Accidents; Transportation Noise
    • R48 - Urban, Rural, Regional, Real Estate, and Transportation Economics - - Transportation Economics - - - Government Pricing and Policy

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:pra:mprapa:89896. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Joachim Winter (email available below). General contact details of provider: https://edirc.repec.org/data/vfmunde.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.