IDEAS home Printed from https://ideas.repec.org/p/pra/mprapa/59208.html
   My bibliography  Save this paper

Managing investor and consumer exposure to electricity market price risks through Feed-in Tariff design

Author

Listed:
  • Devine, Mel
  • Farrell, Niall
  • Lee, William

Abstract

Feed-in Tariffs (FiTs) incentivise the deployment of renewable energy technologies by subsidising remuneration and transferring market price risk from investors, through policymakers, to a counterparty. This counterparty is often the electricity consumer. Different FiT structures exist, with each transferring market price risk to varying degrees. Explicit consideration of policymaker/consumer risk burden has not been incorporated in FiT analyses to date. Using Stackelberg game theory and option pricing, we define FiT policies that efficiently divide market price risk, conditional on risk preferences and market conditions. We find that commonly employed flat-rate FiTs are optimal when policymaker risk aversion is extremely low whilst constant premium policies are optimal when investor risk aversion is extremely low. This suggests that if investors are considerably risk averse, the additional remuneration offered to incentivise deployment under a constant premium regime may be sub-optimal. Similarly, flat-rate FiTs are sub-optimal if policymakers are considerably risk averse. When both policymakers and investors are considerably risk averse, an intermediate division of risk is optimal. We find that investor preferences are more influential than those of the policymaker when degrees of risk aversion are of a similar magnitude. Efficient division of risk is of increasing importance as renewables comprise a greater share of total electricity cost. Different divisions of market price risk may thus be optimal at different stages of renewables deployment. Flexibility in FiT legislation may be required to accommodate this

Suggested Citation

  • Devine, Mel & Farrell, Niall & Lee, William, 2014. "Managing investor and consumer exposure to electricity market price risks through Feed-in Tariff design," MPRA Paper 59208, University Library of Munich, Germany.
  • Handle: RePEc:pra:mprapa:59208
    as

    Download full text from publisher

    File URL: https://mpra.ub.uni-muenchen.de/59208/3/MPRA_paper_59208.pdf
    File Function: original version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Butler, Lucy & Neuhoff, Karsten, 2008. "Comparison of feed-in tariff, quota and auction mechanisms to support wind power development," Renewable Energy, Elsevier, vol. 33(8), pages 1854-1867.
    2. Bürer, Mary Jean & Wüstenhagen, Rolf, 2009. "Which renewable energy policy is a venture capitalist's best friend? Empirical evidence from a survey of international cleantech investors," Energy Policy, Elsevier, vol. 37(12), pages 4997-5006, December.
    3. Conor Devitt & Laura Malaguzzi Valeri, 2011. "The Effect of REFIT on Irish Wholesale Electricity Prices," The Economic and Social Review, Economic and Social Studies, vol. 42(3), pages 343-369.
    4. Batlle, Carlos, 2011. "A method for allocating renewable energy source subsidies among final energy consumers," Energy Policy, Elsevier, vol. 39(5), pages 2586-2595, May.
    5. Couture, Toby & Gagnon, Yves, 2010. "An analysis of feed-in tariff remuneration models: Implications for renewable energy investment," Energy Policy, Elsevier, vol. 38(2), pages 955-965, February.
    6. Mallika Chawla & Michael G. Pollitt, 2013. "Energy-efficiency and Environmental Policies & Income Supplements in the UK: Evolution and Distributional Impacts on Domestic Energy Bills," Economics of Energy & Environmental Policy, International Association for Energy Economics, vol. 0(Number 1).
    7. Chronopoulos, Michail & De Reyck, Bert & Siddiqui, Afzal, 2014. "Duopolistic competition under risk aversion and uncertainty," European Journal of Operational Research, Elsevier, vol. 236(2), pages 643-656.
    8. Cotter, John & Hanly, Jim, 2012. "A utility based approach to energy hedging," Energy Economics, Elsevier, vol. 34(3), pages 817-827.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Lynch & John Curtis, 2016. "The effects of wind generation capacity on electricity prices and generation costs: a Monte Carlo analysis," Applied Economics, Taylor & Francis Journals, vol. 48(2), pages 133-151, January.
    2. Curtis, John & Lynch, Muireann Á. & Zubiate, Laura, 2016. "The impact of the North Atlantic Oscillation on electricity markets: A case study on Ireland," Energy Economics, Elsevier, vol. 58(C), pages 186-198.
    3. Curtis, John & Devitt, Niamh & di Cosmo, Valeria & Farrell, Niall & FitzGerald, John & Hyland, Marie & Lynch, Muireann & Lyons, Sean & McCoy, Daire & Malaguzzi Valeri, Laura & Walsh, Darragh, 2014. "Irish Energy Policy: An Analysis of Current Issues," Research Series, Economic and Social Research Institute (ESRI), number rs37 edited by FitzGerald, John & Malaguzzi Valeri, Laura, June.
    4. Botta, Enrico, 2019. "An experimental approach to climate finance: the impact of auction design and policy uncertainty on renewable energy equity costs in Europe," Energy Policy, Elsevier, vol. 133(C).
    5. Jeon, Chanwoong & Lee, Jeongjin & Shin, Juneseuk, 2015. "Optimal subsidy estimation method using system dynamics and the real option model: Photovoltaic technology case," Applied Energy, Elsevier, vol. 142(C), pages 33-43.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Niall Farrell & Mel T. Devine & William T. Lee & James P. Gleeson & Seán Lyons, 2017. "Specifying An Efficient Renewable Energy Feed-in Tariff," The Energy Journal, , vol. 38(2), pages 53-76, March.
    2. Jenner, Steffen & Groba, Felix & Indvik, Joe, 2013. "Assessing the strength and effectiveness of renewable electricity feed-in tariffs in European Union countries," Energy Policy, Elsevier, vol. 52(C), pages 385-401.
    3. Pérez de Arce, Miguel & Sauma, Enzo & Contreras, Javier, 2016. "Renewable energy policy performance in reducing CO2 emissions," Energy Economics, Elsevier, vol. 54(C), pages 272-280.
    4. del Río, Pablo & Bleda, Mercedes, 2012. "Comparing the innovation effects of support schemes for renewable electricity technologies: A function of innovation approach," Energy Policy, Elsevier, vol. 50(C), pages 272-282.
    5. Fais, Birgit & Blesl, Markus & Fahl, Ulrich & Voß, Alfred, 2014. "Comparing different support schemes for renewable electricity in the scope of an energy systems analysis," Applied Energy, Elsevier, vol. 131(C), pages 479-489.
    6. Li, Jinke & Liu, Guy & Shao, Jing, 2020. "Understanding the ROC transfer payment in the renewable obligation with the recycling mechanism in the United Kingdom," Energy Economics, Elsevier, vol. 87(C).
    7. Christian Haas & Karol Kempa, 2023. "Low-Carbon Investment and Credit Rationing," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 86(1), pages 109-145, October.
    8. del Río, Pablo, 2012. "The dynamic efficiency of feed-in tariffs: The impact of different design elements," Energy Policy, Elsevier, vol. 41(C), pages 139-151.
    9. Romano, Antonio A. & Scandurra, Giuseppe & Carfora, Alfonso & Fodor, Mate, 2017. "Renewable investments: The impact of green policies in developing and developed countries," Renewable and Sustainable Energy Reviews, Elsevier, vol. 68(P1), pages 738-747.
    10. Kim, Kyoung-Kuk & Lee, Chi-Guhn, 2012. "Evaluation and optimization of feed-in tariffs," Energy Policy, Elsevier, vol. 49(C), pages 192-203.
    11. Alaa A. F. Husain & Maryam Huda Ahmad Phesal & Mohd Zainal Abidin Ab Kadir & Ungku Anisa Ungku Amirulddin & Abdulhadi H. J. Junaidi, 2021. "A Decade of Transitioning Malaysia toward a High-Solar PV Energy Penetration Nation," Sustainability, MDPI, vol. 13(17), pages 1-16, September.
    12. Verde, Stefano F. & Pazienza, Maria Grazia, 2016. "Energy and climate hand-in-hand: Financing RES-E support with carbon revenues," Energy Policy, Elsevier, vol. 88(C), pages 234-244.
    13. Sun, Peng & Nie, Pu-yan, 2015. "A comparative study of feed-in tariff and renewable portfolio standard policy in renewable energy industry," Renewable Energy, Elsevier, vol. 74(C), pages 255-262.
    14. del Río, Pablo, 2010. "Analysing the interactions between renewable energy promotion and energy efficiency support schemes: The impact of different instruments and design elements," Energy Policy, Elsevier, vol. 38(9), pages 4978-4989, September.
    15. David P. Brown and Andrew Eckert, 2020. "Imperfect Competition in Electricity Markets with Renewable Generation: The Role of Renewable Compensation Policies," The Energy Journal, International Association for Energy Economics, vol. 0(Number 4), pages 61-88.
    16. Margaux Escoffier & Emmanuel Hache & Valérie Mignon & Anthony Paris, 2019. "Determinants of investments in solar photovoltaic: Do oil prices really matter?," Working Papers hal-04141866, HAL.
    17. Friebe, Christian A. & von Flotow, Paschen & Täube, Florian A., 2014. "Exploring technology diffusion in emerging markets – the role of public policy for wind energy," Energy Policy, Elsevier, vol. 70(C), pages 217-226.
    18. Thapar, Sapan & Sharma, Seema & Verma, Ashu, 2018. "Key determinants of wind energy growth in India: Analysis of policy and non-policy factors," Energy Policy, Elsevier, vol. 122(C), pages 622-638.
    19. Kitzing, Lena & Juul, Nina & Drud, Michael & Boomsma, Trine Krogh, 2017. "A real options approach to analyse wind energy investments under different support schemes," Applied Energy, Elsevier, vol. 188(C), pages 83-96.
    20. Escoffier, Margaux & Hache, Emmanuel & Mignon, Valérie & Paris, Anthony, 2021. "Determinants of solar photovoltaic deployment in the electricity mix: Do oil prices really matter?," Energy Economics, Elsevier, vol. 97(C).

    More about this item

    Keywords

    Renewable Energy; Feed-in Tariff; Option Pricing; Renewable Support Schemes; Market Price Risk;
    All these keywords.

    JEL classification:

    • C63 - Mathematical and Quantitative Methods - - Mathematical Methods; Programming Models; Mathematical and Simulation Modeling - - - Computational Techniques
    • C7 - Mathematical and Quantitative Methods - - Game Theory and Bargaining Theory
    • Q4 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Energy
    • Q42 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Energy - - - Alternative Energy Sources
    • Q58 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Environmental Economics - - - Environmental Economics: Government Policy

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:pra:mprapa:59208. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Joachim Winter (email available below). General contact details of provider: https://edirc.repec.org/data/vfmunde.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.