IDEAS home Printed from https://ideas.repec.org/p/osf/metaar/3bnxs.html
   My bibliography  Save this paper

Simulation study of estimating between-study variance and overall effect in meta-analyses of log-response-ratio for normal data

Author

Listed:
  • Bakbergenuly, Ilyas
  • Hoaglin, David C.
  • Kulinskaya, Elena

Abstract

Methods for random-effects meta-analysis require an estimate of the between-study variance, $\tau^2$. The performance of estimators of $\tau^2$ (measured by bias and coverage) affects their usefulness in assessing heterogeneity of study-level effects, and also the performance of related estimators of the overall effect. For the effect measure log-response-ratio (LRR, also known as the logarithm of the ratio of means, RoM), we review four point estimators of $\tau^2$ (the popular methods of DerSimonian-Laird (DL), restricted maximum likelihood, and Mandel and Paule (MP), and the less-familiar method of Jackson), four interval estimators for $\tau^2$ (profile likelihood, Q-profile, Biggerstaff and Jackson, and Jackson), five point estimators of the overall effect (the four related to the point estimators of $\tau^2$ and an estimator whose weights use only study-level sample sizes), and seven interval estimators for the overall effect (four based on the point estimators for $\tau^2$, the Hartung-Knapp-Sidik-Jonkman (HKSJ) interval, a modification of HKSJ that uses the MP estimator of $\tau^2$ instead of the DL estimator, and an interval based on the sample-size-weighted estimator). We obtain empirical evidence from extensive simulations of data from normal distributions. Simulations from lognormal distributions are in a separate report Bakbergenuly et al. 2019b.

Suggested Citation

  • Bakbergenuly, Ilyas & Hoaglin, David C. & Kulinskaya, Elena, 2020. "Simulation study of estimating between-study variance and overall effect in meta-analyses of log-response-ratio for normal data," MetaArXiv 3bnxs, Center for Open Science.
  • Handle: RePEc:osf:metaar:3bnxs
    DOI: 10.31219/osf.io/3bnxs
    as

    Download full text from publisher

    File URL: https://osf.io/download/5e14d60f754584022ff9c68a/
    Download Restriction: no

    File URL: https://libkey.io/10.31219/osf.io/3bnxs?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Julian P. T. Higgins & Simon G. Thompson & David J. Spiegelhalter, 2009. "A re‐evaluation of random‐effects meta‐analysis," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 172(1), pages 137-159, January.
    2. Sidik, Kurex & Jonkman, Jeffrey N., 2006. "Robust variance estimation for random effects meta-analysis," Computational Statistics & Data Analysis, Elsevier, vol. 50(12), pages 3681-3701, August.
    3. Wolfgang Viechtbauer, 2005. "Bias and Efficiency of Meta-Analytic Variance Estimators in the Random-Effects Model," Journal of Educational and Behavioral Statistics, , vol. 30(3), pages 261-293, September.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yeojin Chung & Sophia Rabe-Hesketh & Vincent Dorie & Andrew Gelman & Jingchen Liu, 2013. "A Nondegenerate Penalized Likelihood Estimator for Variance Parameters in Multilevel Models," Psychometrika, Springer;The Psychometric Society, vol. 78(4), pages 685-709, October.
    2. Sofia Dias & Alex J. Sutton & Nicky J. Welton & A. E. Ades, 2013. "Evidence Synthesis for Decision Making 3," Medical Decision Making, , vol. 33(5), pages 618-640, July.
    3. Amanda Kvarven & Eirik Strømland & Conny Wollbrant & David Andersson & Magnus Johannesson & Gustav Tinghög & Daniel Västfjäll & Kristian Ove R. Myrseth, 2020. "The intuitive cooperation hypothesis revisited: a meta-analytic examination of effect size and between-study heterogeneity," Journal of the Economic Science Association, Springer;Economic Science Association, vol. 6(1), pages 26-42, June.
    4. Nelson, Jon Paul, 2020. "Fixed-effect versus random-effects meta-analysis in economics: A study of pass-through rates for alcohol beverage excise taxes," Economics Discussion Papers 2020-1, Kiel Institute for the World Economy (IfW Kiel).
    5. Ibrahim Y. Tawbe, 2023. "Environmental disclosure programs and birth weight: a meta- analysis," Working Papers 2023-02, CRESE.
    6. Alberto Aiolfi & Emanuele Asti & Emanuele Rausa & Giulia Bonavina & Gianluca Bonitta & Luigi Bonavina, 2018. "Use of C-reactive protein for the early prediction of anastomotic leak after esophagectomy: Systematic review and Bayesian meta-analysis," PLOS ONE, Public Library of Science, vol. 13(12), pages 1-13, December.
    7. Shijie Ren & Jeremy E. Oakley & John W. Stevens, 2018. "Incorporating Genuine Prior Information about Between-Study Heterogeneity in Random Effects Pairwise and Network Meta-analyses," Medical Decision Making, , vol. 38(4), pages 531-542, May.
    8. Ajaree Rayanakorn & Hooi-Leng Ser & Priyia Pusparajah & Kok-Gan Chan & Bey Hing Goh & Tahir Mehmood Khan & Surasak Saokaew & Shaun Wen Huey Lee & Learn-Han Lee, 2020. "Comparative efficacy of antibiotic(s) alone or in combination of corticosteroids in adults with acute bacterial meningitis: A systematic review and network meta-analysis," PLOS ONE, Public Library of Science, vol. 15(5), pages 1-17, May.
    9. Verver, Hugo & van Zelst, Marino & Lucas, Gerardus Johannes Maria & Meeus, Marius, 2019. "Understanding Heterogeneity in the Performance Feedback – Organizational Responsiveness Relationship: A Meta-Analysis," OSF Preprints hq4uw, Center for Open Science.
    10. Tomáš Havránek, 2009. "Rose Effect and the Euro: The Magic is Gone," Working Papers IES 2009/20, Charles University Prague, Faculty of Social Sciences, Institute of Economic Studies, revised Aug 2009.
    11. Ratko Peric & Zoran Nikolovski & Marco Meucci & Philippe Tadger & Carlo Ferri Marini & Francisco José Amaro-Gahete, 2022. "A Systematic Review and Meta-Analysis on the Association and Differences between Aerobic Threshold and Point of Optimal Fat Oxidation," IJERPH, MDPI, vol. 19(11), pages 1-19, May.
    12. Andrew L. Rukhin, 2013. "Estimating heterogeneity variance in meta-analysis," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 75(3), pages 451-469, June.
    13. Cebiroglu, Gökhan & Hautsch, Nikolaus & Walsh, Christopher, 2019. "Revisiting the stealth trading hypothesis: Does time-varying liquidity explain the size-effect?," CFS Working Paper Series 625, Center for Financial Studies (CFS).
    14. Richard A Hubner & Richard D Riley & Lucinda J Billingham & Sanjay Popat, 2011. "Excision Repair Cross-Complementation Group 1 (ERCC1) Status and Lung Cancer Outcomes: A Meta-Analysis of Published Studies and Recommendations," PLOS ONE, Public Library of Science, vol. 6(10), pages 1-10, October.
    15. Christopher Hansen & Joern Block & Matthias Neuenkirch, 2020. "Family Firm Performance Over The Business Cycle: A Meta‐Analysis," Journal of Economic Surveys, Wiley Blackwell, vol. 34(3), pages 476-511, July.
    16. Schmidli, Heinz & Neuenschwander, Beat & Friede, Tim, 2017. "Meta-analytic-predictive use of historical variance data for the design and analysis of clinical trials," Computational Statistics & Data Analysis, Elsevier, vol. 113(C), pages 100-110.
    17. Anna Chaimani & Julian P T Higgins & Dimitris Mavridis & Panagiota Spyridonos & Georgia Salanti, 2013. "Graphical Tools for Network Meta-Analysis in STATA," PLOS ONE, Public Library of Science, vol. 8(10), pages 1-12, October.
    18. Elena Kulinskaya & Stephan Morgenthaler & Robert G. Staudte, 2014. "Combining Statistical Evidence," International Statistical Review, International Statistical Institute, vol. 82(2), pages 214-242, August.
    19. Layan Sukik & Maryam Alyafei & Manale Harfouche & Laith J Abu-Raddad, 2019. "Herpes simplex virus type 1 epidemiology in Latin America and the Caribbean: Systematic review and meta-analytics," PLOS ONE, Public Library of Science, vol. 14(4), pages 1-20, April.
    20. Vladislav Morozov, 2022. "Inference on Extreme Quantiles of Unobserved Individual Heterogeneity," Papers 2210.08524, arXiv.org, revised Jun 2023.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:osf:metaar:3bnxs. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: OSF (email available below). General contact details of provider: https://osf.io/preprints/metaarxiv .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.