IDEAS home Printed from https://ideas.repec.org/p/koe/wpaper/1207.html
   My bibliography  Save this paper

Willingness to pay for the infrastructure investments for alternative fuel vehicles

Author

Listed:
  • Nobuyuki Ito

    (Graduate School of Agriculture, Kyoto University)

  • Kenji Takeuchi

    (Graduate School of Economics, Kobe University)

  • Shunsuke Managi

    (Graduate School of Environmental Studies, Tohoku University)

Abstract

This study investigates potential demand for infrastructure investment for alternative fuel vehicles (AFVs) by using a stated preference survey of 1,531 Japanese citizens. The potential demand is estimated on the basis of how much people are willing to pay for AFVs under different refueling scenarios. By using the estimated parameters, the economic efficiency of establishing battery exchange stations for electric vehicles is examined. The result indicates that infrastructural development of battery exchange stations can be socially efficient when the percentage of electric vehicle purchasers out of the total number of new vehicle purchasers exceeds 5.63%. Furthermore, in contrast to intuitive prediction, we found a complement relationship between the cruising ranges of AFVs and the infrastructures established. The result suggests that people with AFVs might change their total trip distance depending on the sufficiency of infrastructure investment.

Suggested Citation

  • Nobuyuki Ito & Kenji Takeuchi & Shunsuke Managi, 2012. "Willingness to pay for the infrastructure investments for alternative fuel vehicles," Discussion Papers 1207, Graduate School of Economics, Kobe University.
  • Handle: RePEc:koe:wpaper:1207
    as

    Download full text from publisher

    File URL: http://www.econ.kobe-u.ac.jp/RePEc/koe/wpaper/2012/1207.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Brownstone, David & Train, Kenneth, 1998. "Forecasting new product penetration with flexible substitution patterns," Journal of Econometrics, Elsevier, vol. 89(1-2), pages 109-129, November.
    2. Brownstone, David & Bunch, David S. & Train, Kenneth, 2000. "Joint mixed logit models of stated and revealed preferences for alternative-fuel vehicles," Transportation Research Part B: Methodological, Elsevier, vol. 34(5), pages 315-338, June.
    3. Train,Kenneth E., 2009. "Discrete Choice Methods with Simulation," Cambridge Books, Cambridge University Press, number 9780521766555.
    4. Bunch, David S. & Bradley, Mark & Golob, Thomas F. & Kitamura, Ryuichi & Occhiuzzo, Gareth P., 1993. "Demand for clean-fuel vehicles in California: A discrete-choice stated preference pilot project," Transportation Research Part A: Policy and Practice, Elsevier, vol. 27(3), pages 237-253, May.
    5. Louviere,Jordan J. & Hensher,David A. & Swait,Joffre D. With contributions by-Name:Adamowicz,Wiktor, 2000. "Stated Choice Methods," Cambridge Books, Cambridge University Press, number 9780521788304, November.
    6. Krinsky, Itzhak & Robb, A Leslie, 1986. "On Approximating the Statistical Properties of Elasticities," The Review of Economics and Statistics, MIT Press, vol. 68(4), pages 715-719, November.
    7. Hidrue, Michael K. & Parsons, George R. & Kempton, Willett & Gardner, Meryl P., 2011. "Willingness to pay for electric vehicles and their attributes," Resource and Energy Economics, Elsevier, vol. 33(3), pages 686-705, September.
    8. Beggs, S. & Cardell, S. & Hausman, J., 1981. "Assessing the potential demand for electric cars," Journal of Econometrics, Elsevier, vol. 17(1), pages 1-19, September.
    9. Calfee, John E., 1985. "Estimating the demand for electric automobiles using fully disaggregated probabilistic choice analysis," Transportation Research Part B: Methodological, Elsevier, vol. 19(4), pages 287-301, August.
    10. Hensher, David A. & Greene, William H., 2002. "Specification and estimation of the nested logit model: alternative normalisations," Transportation Research Part B: Methodological, Elsevier, vol. 36(1), pages 1-17, January.
    11. Brownstone, David & Bunch, David S & Golob, Thomas F & Ren, Weiping, 1996. "A Transactions Choice Model for Forecasting Demand for Alternative-Fuel Vehicles," University of California Transportation Center, Working Papers qt3sm7w9zk, University of California Transportation Center.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Milan Scasny & Milan Scasny & Iva Zverinova & Mikolaj Czajkowski, 2015. "Individual preference for the alternative fuel vehicles and their attributes in Poland," EcoMod2015 8575, EcoMod.
    2. Ito, Nobuyuki & Takeuchi, Kenji & Managi, Shunsuke, 2019. "Do battery-switching systems accelerate the adoption of electric vehicles? A stated preference study," Economic Analysis and Policy, Elsevier, vol. 61(C), pages 85-92.
    3. Jeremy Webb & Max Briggs & Clevo Wilson, 2018. "Breaking automotive modal lock-in: a choice modelling study of Jakarta commuters," Environmental Economics and Policy Studies, Springer;Society for Environmental Economics and Policy Studies - SEEPS, vol. 20(1), pages 47-68, January.
    4. Kim, Ga-Eun & Kim, Ju-Hee & Yoo, Seung-Hoon, 2019. "South Korean consumers’ preferences for eco-friendly gasoline sedans: Results from a choice experiment survey," Transport Policy, Elsevier, vol. 77(C), pages 1-7.
    5. Fabio Carlucci & Andrea Cirà & Giuseppe Lanza, 2018. "Hybrid Electric Vehicles: Some Theoretical Considerations on Consumption Behaviour," Sustainability, MDPI, vol. 10(4), pages 1-11, April.
    6. Pacharaporn Arkornsakul & Woraphon Yamaka & Sombat Singkharat, 2015. "Consumer?s Willingness to Pay for Gasohol E100 in Chiang Mai Province and Nakhon Ratchasima Province," Proceedings of International Academic Conferences 2704676, International Institute of Social and Economic Sciences.
    7. Kim, Ju-Hee & Kim, Hyo-Jin & Yoo, Seung-Hoon, 2019. "Willingness to pay for fuel-cell electric vehicles in South Korea," Energy, Elsevier, vol. 174(C), pages 497-502.
    8. Makena Coffman & Scott Allen & Sherilyn Wee, 2018. "Who are Driving Electric Vehicles? An analysis of factors that affect EV adoption in Hawaii," Working Papers 2018-3, University of Hawaii Economic Research Organization, University of Hawaii at Manoa.
    9. Ito, Yutaka & Managi, Shunsuke, 2015. "The potential of alternative fuel vehicles: A cost-benefit analysis," Research in Transportation Economics, Elsevier, vol. 50(C), pages 39-50.
    10. Byunghun Choi, 2016. "A Study on Limitation of Government Initiative Model for Alternative Fuel Vehicle (AFV) Promotion in China," Eurasian Journal of Social Sciences, Eurasian Publications, vol. 4(2), pages 66-84.
    11. Hackbarth, André & Madlener, Reinhard, 2011. "Consumer Preferences for Alternative Fuel Vehicles: A Discrete Choice Analysis," FCN Working Papers 20/2011, E.ON Energy Research Center, Future Energy Consumer Needs and Behavior (FCN).
    12. Shin, Kong Joo & Tada, Naoto & Managi, Shunsuke, 2019. "Consumer demand for fully automated driving technology," Economic Analysis and Policy, Elsevier, vol. 61(C), pages 16-28.
    13. Karsten Kieckhäfer & Thomas Volling & Thomas Stefan Spengler, 2014. "A Hybrid Simulation Approach for Estimating the Market Share Evolution of Electric Vehicles," Transportation Science, INFORMS, vol. 48(4), pages 651-670, November.
    14. Gabriela D. Oliveira & Luis C. Dias, 2019. "Influence of Demographics on Consumer Preferences for Alternative Fuel Vehicles: A Review of Choice Modelling Studies and a Study in Portugal," Energies, MDPI, vol. 12(2), pages 1-33, January.
    15. Hackbarth, André & Madlener, Reinhard, 2016. "Willingness-to-pay for alternative fuel vehicle characteristics: A stated choice study for Germany," Transportation Research Part A: Policy and Practice, Elsevier, vol. 85(C), pages 89-111.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hidrue, Michael K. & Parsons, George R. & Kempton, Willett & Gardner, Meryl P., 2011. "Willingness to pay for electric vehicles and their attributes," Resource and Energy Economics, Elsevier, vol. 33(3), pages 686-705, September.
    2. Hackbarth, André & Madlener, Reinhard, 2011. "Consumer Preferences for Alternative Fuel Vehicles: A Discrete Choice Analysis," FCN Working Papers 20/2011, E.ON Energy Research Center, Future Energy Consumer Needs and Behavior (FCN).
    3. Tanaka, Makoto & Ida, Takanori & Murakami, Kayo & Friedman, Lee, 2014. "Consumers’ willingness to pay for alternative fuel vehicles: A comparative discrete choice analysis between the US and Japan," Transportation Research Part A: Policy and Practice, Elsevier, vol. 70(C), pages 194-209.
    4. Dimitropoulos, Alexandros & Rietveld, Piet & van Ommeren, Jos N., 2013. "Consumer valuation of changes in driving range: A meta-analysis," Transportation Research Part A: Policy and Practice, Elsevier, vol. 55(C), pages 27-45.
    5. Takanori Ida & Kayo Murakami & Makoto Tanaka, 2012. "Keys to Smart Home Diffusion: A Stated Preference Analysis of Smart Meters, Photovoltaic Generation, and Electric/Hybrid Vehicles," Discussion papers e-11-011, Graduate School of Economics Project Center, Kyoto University.
    6. Haghani, Milad & Bliemer, Michiel C.J. & Hensher, David A., 2021. "The landscape of econometric discrete choice modelling research," Journal of choice modelling, Elsevier, vol. 40(C).
    7. Alexandros Dimitropoulos & Piet Rietveld & Jos N. van Ommeren, 2011. "Consumer Valuation of Driving Range: A Meta-Analysis," Tinbergen Institute Discussion Papers 11-133/3, Tinbergen Institute.
    8. Kim, Junghun & Seung, Hyunchan & Lee, Jongsu & Ahn, Joongha, 2020. "Asymmetric preference and loss aversion for electric vehicles: The reference-dependent choice model capturing different preference directions," Energy Economics, Elsevier, vol. 86(C).
    9. Daina, Nicolò & Sivakumar, Aruna & Polak, John W., 2017. "Modelling electric vehicles use: a survey on the methods," Renewable and Sustainable Energy Reviews, Elsevier, vol. 68(P1), pages 447-460.
    10. Hackbarth, André & Madlener, Reinhard, 2016. "Willingness-to-pay for alternative fuel vehicle characteristics: A stated choice study for Germany," Transportation Research Part A: Policy and Practice, Elsevier, vol. 85(C), pages 89-111.
    11. Martin Achtnicht, 2012. "German car buyers’ willingness to pay to reduce CO 2 emissions," Climatic Change, Springer, vol. 113(3), pages 679-697, August.
    12. Gabriela D. Oliveira & Luis C. Dias, 2019. "Influence of Demographics on Consumer Preferences for Alternative Fuel Vehicles: A Review of Choice Modelling Studies and a Study in Portugal," Energies, MDPI, vol. 12(2), pages 1-33, January.
    13. Yang, Xiaofang & Jin, Wen & Jiang, Hai & Xie, Qianyan & Shen, Wei & Han, Weijian, 2017. "Car ownership policies in China: Preferences of residents and influence on the choice of electric cars," Transport Policy, Elsevier, vol. 58(C), pages 62-71.
    14. Thomas M. Fojcik & Heike Proff, 2014. "Accelerating market diffusion of battery electric vehicles through alternative mobility concepts," International Journal of Automotive Technology and Management, Inderscience Enterprises Ltd, vol. 14(3/4), pages 347-368.
    15. Anders F. Jensen & Elisabetta Cherchi & Stefan L. Mabit & Juan de Dios Ortúzar, 2017. "Predicting the Potential Market for Electric Vehicles," Transportation Science, INFORMS, vol. 51(2), pages 427-440, May.
    16. J�r�me Massiani, 2013. "The use of Stated Preferences to forecast alternative fuel vehicles market diffusion: Comparisons with other methods and proposal for a Synthetic Utility Function," Working Papers 2013:12, Department of Economics, University of Venice "Ca' Foscari".
    17. Parsons, George R. & Hidrue, Michael K. & Kempton, Willett & Gardner, Meryl P., 2014. "Willingness to pay for vehicle-to-grid (V2G) electric vehicles and their contract terms," Energy Economics, Elsevier, vol. 42(C), pages 313-324.
    18. Loría, Luis Enrique & Watson, Verity & Kiso, Takahiko & Phimister, Euan, 2019. "Investigating users' preferences for Low Emission Buses: Experiences from Europe's largest hydrogen bus fleet," Journal of choice modelling, Elsevier, vol. 32(C), pages 1-1.
    19. Zhang, Yong & Yu, Yifeng & Zou, Bai, 2011. "Analyzing public awareness and acceptance of alternative fuel vehicles in China: The case of EV," Energy Policy, Elsevier, vol. 39(11), pages 7015-7024.
    20. Ricardo A. Daziano & Martin Achtnicht, 2014. "Forecasting Adoption of Ultra-Low-Emission Vehicles Using Bayes Estimates of a Multinomial Probit Model and the GHK Simulator," Transportation Science, INFORMS, vol. 48(4), pages 671-683, November.

    More about this item

    Keywords

    Alternative fuel vehicle; infrastructure investment; stated preference method; choice experiment; discrete choice; nested logit model; cost-benefit analysis;
    All these keywords.

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:koe:wpaper:1207. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Kimiaki Shirahama (email available below). General contact details of provider: https://edirc.repec.org/data/fekobjp.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.