IDEAS home Printed from https://ideas.repec.org/p/hhs/gunwpe/0053.html
   My bibliography  Save this paper

Technical efficiency in the Swedish trawl fishery for Norway lobster

Author

Listed:
  • Eggert, Håkan

    (Department of Economics, School of Economics and Commercial Law, Göteborg University)

Abstract

Reducing fleet capacity in European fisheries is an important objective of the European Union’s Common Fisheries Policy. The success of such programmes depends both on the variation and the level of efficiency within the fishing fleets. If vessels with significantly lower than average efficiency levels are decommissioned, the actual reduction in fishing capacity will be less than expected. Further, if the remaining vessels are not operating at an efficient level after a decommissioning program, future improvement in efficiency may even further offset the effects of the decommissioning program. This paper examines the level and determinants of technical efficiency for a sample of Swedish demersal trawlers, which mainly target Norway lobster but also shrimp and demersal fish, in 1995. The data on per-trip gross revenues, fishing effort, gear choice, month of fishing and vessel attributes are analyzed using a translog stochastic production frontier, including a model for vessel-specific technical inefficiencies. Output elasticities and returns to scale are also examined. The technical inefficiency effects are found to be highly significant in explaining the levels and variation in vessel revenues. The mean efficiency for the sample vessels is estimated to be 66%. The inefficiency model indicates that efficiency decreases with total annual effort, and the same applies with vessel size in Gross Registered Tonnage. Further, it is found that older vessels are less efficient.

Suggested Citation

  • Eggert, Håkan, 2001. "Technical efficiency in the Swedish trawl fishery for Norway lobster," Working Papers in Economics 53, University of Gothenburg, Department of Economics.
  • Handle: RePEc:hhs:gunwpe:0053
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/2077/2878
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Copes, Parzival, 1972. "Factor Rents, Sole Ownership and the Optimum Level of Fisheries Exploitation," The Manchester School of Economic & Social Studies, University of Manchester, vol. 40(2), pages 145-163, June.
    2. Jondrow, James & Knox Lovell, C. A. & Materov, Ivan S. & Schmidt, Peter, 1982. "On the estimation of technical inefficiency in the stochastic frontier production function model," Journal of Econometrics, Elsevier, vol. 19(2-3), pages 233-238, August.
    3. George Battese & Sumiter Broca, 1997. "Functional Forms of Stochastic Frontier Production Functions and Models for Technical Inefficiency Effects: A Comparative Study for Wheat Farmers in Pakistan," Journal of Productivity Analysis, Springer, vol. 8(4), pages 395-414, November.
    4. Meeusen, Wim & van den Broeck, Julien, 1977. "Efficiency Estimation from Cobb-Douglas Production Functions with Composed Error," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 18(2), pages 435-444, June.
    5. Campbell, H. F. & Hand, A. J., 1998. "Joint ventures and technology transfer: the Solomon Islands pole-and-line fishery," Journal of Development Economics, Elsevier, vol. 57(2), pages 421-442.
    6. Dupont, Diane P., 1990. "Rent dissipation in restricted access fisheries," Journal of Environmental Economics and Management, Elsevier, vol. 19(1), pages 26-44, July.
    7. Battese, George E. & Coelli, Tim J., 1988. "Prediction of firm-level technical efficiencies with a generalized frontier production function and panel data," Journal of Econometrics, Elsevier, vol. 38(3), pages 387-399, July.
    8. Pitt, Mark M. & Lee, Lung-Fei, 1981. "The measurement and sources of technical inefficiency in the Indonesian weaving industry," Journal of Development Economics, Elsevier, vol. 9(1), pages 43-64, August.
    9. Sean Pascoe & Catherine Robinson, 1998. "Input Controls, Input Substitution and Profit Maximisation in the English Channel Beam Trawl Fishery," Journal of Agricultural Economics, Wiley Blackwell, vol. 49(1), pages 16-33, March.
    10. Kumbhakar, Subal C & Ghosh, Soumendra & McGuckin, J Thomas, 1991. "A Generalized Production Frontier Approach for Estimating Determinants of Inefficiency in U.S. Dairy Farms," Journal of Business & Economic Statistics, American Statistical Association, vol. 9(3), pages 279-286, July.
    11. Kodde, David A & Palm, Franz C, 1986. "Wald Criteria for Jointly Testing Equality and Inequality Restriction s," Econometrica, Econometric Society, vol. 54(5), pages 1243-1248, September.
    12. Battese, G E & Coelli, T J, 1995. "A Model for Technical Inefficiency Effects in a Stochastic Frontier Production Function for Panel Data," Empirical Economics, Springer, vol. 20(2), pages 325-332.
    13. Aigner, Dennis & Lovell, C. A. Knox & Schmidt, Peter, 1977. "Formulation and estimation of stochastic frontier production function models," Journal of Econometrics, Elsevier, vol. 6(1), pages 21-37, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Standal, Dag & Annie Sønvisen, Signe, 2015. "Gear liberalization in the Northeast Arctic cod fisheries – Implications for sustainability, efficiency and legitimacy," Marine Policy, Elsevier, vol. 53(C), pages 141-148.
    2. Sadjadi, S.J. & Omrani, H., 2008. "Data envelopment analysis with uncertain data: An application for Iranian electricity distribution companies," Energy Policy, Elsevier, vol. 36(11), pages 4247-4254, November.
    3. Alvarez, Antonio & Couce, Lorena & Trujillo, Lourdes, 2019. "Does Specialization Affect the Efficiency of Small-Scale Fishing Boats?," Efficiency Series Papers 2019/03, University of Oviedo, Department of Economics, Oviedo Efficiency Group (OEG).
    4. Álvarez, Antonio, 2003. "Econometric Estimation of Fishing Production Functions when Stocks is Unknown: A Monte Carlo Analysis," Efficiency Series Papers 2003/09, University of Oviedo, Department of Economics, Oviedo Efficiency Group (OEG).
    5. Håkan Eggert & Ragnar Tveteras, 2004. "Stochastic Production and Heterogeneous Risk Preferences: Commercial Fishers' Gear Choices," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 86(1), pages 199-212.
    6. Stefano Mainardi, 2021. "Parametric and Semiparametric Efficiency Frontiers in Fishery Analysis: Overview and Case Study on the Falkland Islands," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 79(2), pages 169-210, June.
    7. Álvarez, Antonio, 2001. "Some Issues on the Estimation of Technical Efficiency in Fisheries," Efficiency Series Papers 2001/02, University of Oviedo, Department of Economics, Oviedo Efficiency Group (OEG).
    8. Lokina, Razack B., 2008. "Technical Efficiency and the Role of Skipper Skill in Artisanal Lake Victoria Fisheries," RFF Working Paper Series dp-08-13-efd, Resources for the Future.
    9. Niels Vestergaard & Dale Squires & Frank Jensen & Jesper L. Andersen, 2002. "Technical Efficiency of the Danish Trawl fleet: Are the Industrial Vessels Better than Others?," Working Papers 32/02, University of Southern Denmark, Department of Sociology, Environmental and Business Economics.
    10. Azadeh, A. & Ghaderi, S.F. & Omrani, H. & Eivazy, H., 2009. "An integrated DEA-COLS-SFA algorithm for optimization and policy making of electricity distribution units," Energy Policy, Elsevier, vol. 37(7), pages 2605-2618, July.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lokina, Razack B., 2008. "Technical Efficiency and the Role of Skipper Skill in Artisanal Lake Victoria Fisheries," RFF Working Paper Series dp-08-13-efd, Resources for the Future.
    2. Tom Kompas & Tuong Nhu Che & R. Quentin Grafton, 2004. "Technical efficiency effects of input controls: evidence from Australia's banana prawn fishery," Applied Economics, Taylor & Francis Journals, vol. 36(15), pages 1631-1641.
    3. Yongil Jeon & Ishak Haji Omar & K. Kuperan & Dale Squires & Indah Susilowati, 2006. "Developing country fisheries and technical efficiency: the Java Sea purse seine fishery," Applied Economics, Taylor & Francis Journals, vol. 38(13), pages 1541-1552.
    4. Niels Vestergaard & Dale Squires & Frank Jensen & Jesper L. Andersen, 2002. "Technical Efficiency of the Danish Trawl fleet: Are the Industrial Vessels Better than Others?," Working Papers 32/02, University of Southern Denmark, Department of Sociology, Environmental and Business Economics.
    5. Giannis Karagiannis & Vangelis Tzouvelekas, 1999. "Measuring Technical Efficiency with Panel Data: Results from Competing Models," Working Papers 9914, University of Crete, Department of Economics.
    6. Goyal, S.K. & Suhag, K.S. & Pandey, U.K., 2006. "An Estimation of Technical Efficiency of Paddy Farmers in Haryana State of India," Indian Journal of Agricultural Economics, Indian Society of Agricultural Economics, vol. 61(1), pages 1-15.
    7. Madau, Fabio A., 2005. "Technical Efficiency in Organic Farming: An Application on Italian Cereal Farms Using a Parametric Approach," 2005 International Congress, August 23-27, 2005, Copenhagen, Denmark 24545, European Association of Agricultural Economists.
    8. Paul, Satya & Shankar, Sriram, 2018. "Modelling Efficiency Effects in a True Fixed Effects Stochastic Frontier," MPRA Paper 87437, University Library of Munich, Germany.
    9. Young Hoon Lee, 2009. "Frontier Models and their Application to the Sports Industry," Working Papers 0903, Nam Duck-Woo Economic Research Institute, Sogang University (Former Research Institute for Market Economy), revised 2009.
    10. Manlagnit, Maria Chelo V., 2015. "Basel regulations and banks’ efficiency: The case of the Philippines," Journal of Asian Economics, Elsevier, vol. 39(C), pages 72-85.
    11. Madau, Fabio A., 2011. "Parametric Estimation of Technical and Scale Efficiencies in Italian Citrus Farming," Agricultural Economics Review, Greek Association of Agricultural Economists, vol. 12(1).
    12. Satya Paul & Sriram Shankar, 2020. "Estimating efficiency effects in a panel data stochastic frontier model," Journal of Productivity Analysis, Springer, vol. 53(2), pages 163-180, April.
    13. Gian Carlo Scarsi, 1999. "Local Electricity Distribution in Italy: Comparative Efficiency Analysis and Methodological Cross-Checking," Working Papers 1999.16, Fondazione Eni Enrico Mattei.
    14. Tim J. Coelli, 1995. "Recent Developments In Frontier Modelling And Efficiency Measurement," Australian Journal of Agricultural and Resource Economics, Australian Agricultural and Resource Economics Society, vol. 39(3), pages 219-245, December.
    15. Sean Pascoe & Parastoo Hassaszahed & Jesper Anderson & Knud Korsbrekke, 2003. "Economic versus physical input measures in the analysis of technical efficiency in fisheries," Applied Economics, Taylor & Francis Journals, vol. 35(15), pages 1699-1710.
    16. Althaler, Karl S. & Slavova, Tatjana, 2000. "DEA Problems under Geometrical or Probability Uncertainties of Sample Data," Economics Series 89, Institute for Advanced Studies.
    17. Manlagñit, Maria Chelo V., 2011. "Cost efficiency, determinants, and risk preferences in banking: A case of stochastic frontier analysis in the Philippines," Journal of Asian Economics, Elsevier, vol. 22(1), pages 23-35, February.
    18. Martín Rossi, 2015. "The Econometrics Approach to the Measurement of Efficiency: A Survey," Working Papers 117, Universidad de San Andres, Departamento de Economia, revised Feb 2015.
    19. Abdul Wadud, 2013. "Impact of Microcredit on Agricultural Farm Performance and Food Security in Bangladesh," Working Papers 14, Institute of Microfinance (InM).
    20. Karagiannis, Giannis & Tzouvelekas, Vangelis, 2009. "Parametric Measurement of Time-Varying Technical Inefficiency: Results from Competing Models," Agricultural Economics Review, Greek Association of Agricultural Economists, vol. 10(1), pages 1-30.

    More about this item

    Keywords

    stochastic production frontier; Swedish fisheries; technical efficiency;
    All these keywords.

    JEL classification:

    • C23 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Models with Panel Data; Spatio-temporal Models
    • Q22 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Renewable Resources and Conservation - - - Fishery

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hhs:gunwpe:0053. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Ann-Christin Räätäri Nyström (email available below). General contact details of provider: https://edirc.repec.org/data/naiguse.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.