IDEAS home Printed from https://ideas.repec.org/p/ecb/ecbwps/20212558.html
   My bibliography  Save this paper

The COVID-19 shock and challenges for time series models

Author

Listed:
  • Bobeica, Elena
  • Hartwig, Benny

Abstract

We document the impact of COVID-19 on frequently employed time series models, with a focus on euro area inflation. We show that for both single equation models (Phillips curves) and Vector Autoregressions (VARs) estimated parameters change notably with the pandemic. In a VAR, allowing the errors to have a distribution with fatter tails than the Gaussian one equips the model to better deal with the COVID-19 shock. A standard Gaussian VAR can still be used for producing conditional forecasts when relevant off-model information is used. We illustrate this by conditioning on official projections for a set of variables, but also by tilting to expectations from the Survey of Professional Forecasters. For Phillips curves, averaging across many conditional forecasts in a thick modelling framework offers some hedge against parameter instability. JEL Classification: C53, E31, E37

Suggested Citation

  • Bobeica, Elena & Hartwig, Benny, 2021. "The COVID-19 shock and challenges for time series models," Working Paper Series 2558, European Central Bank.
  • Handle: RePEc:ecb:ecbwps:20212558
    Note: 2382002
    as

    Download full text from publisher

    File URL: https://www.ecb.europa.eu//pub/pdf/scpwps/ecb.wp2558~22b223a7c6.en.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Marta Banbura & Domenico Giannone & Lucrezia Reichlin, 2010. "Large Bayesian vector auto regressions," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 25(1), pages 71-92.
    2. Timothy Cogley & Thomas J. Sargent, 2005. "Drift and Volatilities: Monetary Policies and Outcomes in the Post WWII U.S," Review of Economic Dynamics, Elsevier for the Society for Economic Dynamics, vol. 8(2), pages 262-302, April.
    3. Magdalena Grothe & Aidan Meyler, 2018. "Inflation Forecasts: Are Market-Based and Survey-Based Measures Informative?," International Journal of Financial Research, International Journal of Financial Research, Sciedu Press, vol. 9(1), pages 171-188, January.
    4. Bańbura, Marta & Bobeica, Elena, 2023. "Does the Phillips curve help to forecast euro area inflation?," International Journal of Forecasting, Elsevier, vol. 39(1), pages 364-390.
    5. Luca Fornaro & Martin Wolf, 2020. "Covid-19 coronavirus and macroeconomic policy," Economics Working Papers 1713, Department of Economics and Business, Universitat Pompeu Fabra.
    6. Martin Bodenstein & Giancarlo Corsetti & Luca Guerrieri, 2022. "Social distancing and supply disruptions in a pandemic," Quantitative Economics, Econometric Society, vol. 13(2), pages 681-721, May.
    7. Gary Koop & Dimitris Korobilis, 2012. "Forecasting Inflation Using Dynamic Model Averaging," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 53(3), pages 867-886, August.
    8. Vasco Cúrdia & Marco Del Negro & Daniel L. Greenwald, 2014. "Rare Shocks, Great Recessions," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 29(7), pages 1031-1052, November.
    9. Hartwig, Benny, 2020. "Robust Inference in Time-Varying Structural VAR Models: The DC-Cholesky Multivariate Stochastic Volatility Model," VfS Annual Conference 2020 (Virtual Conference): Gender Economics 224528, Verein für Socialpolitik / German Economic Association.
    10. Barbara Rossi, 2019. "Forecasting in the Presence of Instabilities: How Do We Know Whether Models Predict Well and How to Improve Them," Working Papers 1162, Barcelona School of Economics.
    11. Robertson, John C & Tallman, Ellis W & Whiteman, Charles H, 2005. "Forecasting Using Relative Entropy," Journal of Money, Credit and Banking, Blackwell Publishing, vol. 37(3), pages 383-401, June.
    12. Ganics, Gergely & Odendahl, Florens, 2021. "Bayesian VAR forecasts, survey information, and structural change in the euro area," International Journal of Forecasting, Elsevier, vol. 37(2), pages 971-999.
    13. Elena Bobeica & Marek Jarociński, 2019. "Missing Disinflation and Missing Inflation: A VAR Perspective," International Journal of Central Banking, International Journal of Central Banking, vol. 15(1), pages 199-232, March.
    14. Chiu, Ching-Wai (Jeremy) & Mumtaz, Haroon & Pintér, Gábor, 2017. "Forecasting with VAR models: Fat tails and stochastic volatility," International Journal of Forecasting, Elsevier, vol. 33(4), pages 1124-1143.
    15. Siddhartha Chib & Srikanth Ramamurthy, 2014. "DSGE Models with Student- t Errors," Econometric Reviews, Taylor & Francis Journals, vol. 33(1-4), pages 152-171, June.
    16. Scott R. Baker & Nicholas Bloom & Steven J. Davis, 2016. "Measuring Economic Policy Uncertainty," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 131(4), pages 1593-1636.
    17. Shawn Ni & Dongchu Sun, 2005. "Bayesian Estimates for Vector Autoregressive Models," Journal of Business & Economic Statistics, American Statistical Association, vol. 23, pages 105-117, January.
    18. Frank Schorfheide & Dongho Song, 2020. "Real-Time Forecasting with a (Standard) Mixed-Frequency VAR During a Pandemic," Working Papers 20-26, Federal Reserve Bank of Philadelphia.
    19. Kyle Jurado & Sydney C. Ludvigson & Serena Ng, 2015. "Measuring Uncertainty," American Economic Review, American Economic Association, vol. 105(3), pages 1177-1216, March.
    20. Ascari, Guido & Fagiolo, Giorgio & Roventini, Andrea, 2015. "Fat-Tail Distributions And Business-Cycle Models," Macroeconomic Dynamics, Cambridge University Press, vol. 19(2), pages 465-476, March.
    21. Marta Banbura & Domenico Giannone & Lucrezia Reichlin, 2010. "Large Bayesian vector auto regressions," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 25(1), pages 71-92.
    22. Angelini, Elena & Darracq Pariès, Matthieu & Zimic, Srečko & Damjanović, Milan, 2020. "ECB-BASIR: a primer on the macroeconomic implications of the Covid-19 pandemic," Working Paper Series 2431, European Central Bank.
    23. Eichenbaum, Martin S. & Rebelo, Sergio & Trabandt, Mathias, 2022. "Epidemics in the New Keynesian model," Journal of Economic Dynamics and Control, Elsevier, vol. 140(C).
    24. Michele Lenza & Giorgio E. Primiceri, 2020. "How to Estimate a VAR after March 2020," NBER Working Papers 27771, National Bureau of Economic Research, Inc.
    25. Veronica Guerrieri & Guido Lorenzoni & Ludwig Straub & Iván Werning, 2022. "Macroeconomic Implications of COVID-19: Can Negative Supply Shocks Cause Demand Shortages?," American Economic Review, American Economic Association, vol. 112(5), pages 1437-1474, May.
    26. Thomas Doan & Robert B. Litterman & Christopher A. Sims, 1983. "Forecasting and Conditional Projection Using Realistic Prior Distributions," NBER Working Papers 1202, National Bureau of Economic Research, Inc.
    27. Daniel F. Waggoner & Tao Zha, 1999. "Conditional Forecasts In Dynamic Multivariate Models," The Review of Economics and Statistics, MIT Press, vol. 81(4), pages 639-651, November.
    28. Sims, Christopher A & Zha, Tao, 1998. "Bayesian Methods for Dynamic Multivariate Models," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 39(4), pages 949-968, November.
    29. Geweke, J, 1993. "Bayesian Treatment of the Independent Student- t Linear Model," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 8(S), pages 19-40, Suppl. De.
    30. O’Brien, Derry & Dumoncel, Clémence & Gonçalves, Eduardo, 2021. "The role of demand and supply factors in HICP inflation during the COVID-19 pandemic – a disaggregated perspective," Economic Bulletin Articles, European Central Bank, vol. 1.
    31. Bobeica, Elena & Sokol, Andrej, 2019. "Drivers of underlying inflation in the euro area over time: a Phillips curve perspective," Economic Bulletin Articles, European Central Bank, vol. 4.
    32. Jacquier, Eric & Polson, Nicholas G. & Rossi, P.E.Peter E., 2004. "Bayesian analysis of stochastic volatility models with fat-tails and correlated errors," Journal of Econometrics, Elsevier, vol. 122(1), pages 185-212, September.
    33. Frederic S. Mishkin, 2011. "Monetary Policy Strategy: Lessons from the Crisis," NBER Working Papers 16755, National Bureau of Economic Research, Inc.
    34. Giorgio E. Primiceri, 2005. "Time Varying Structural Vector Autoregressions and Monetary Policy," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 72(3), pages 821-852.
    35. Joshua C C Chan & Cody Y L Hsiao, 2013. "Estimation of Stochastic Volatility Models with Heavy Tails and Serial Dependence," CAMA Working Papers 2013-74, Centre for Applied Macroeconomic Analysis, Crawford School of Public Policy, The Australian National University.
    36. Ciccarelli, Matteo & Osbat, Chiara, 2017. "Low inflation in the euro area: Causes and consequences," Occasional Paper Series 181, European Central Bank.
    37. David Baqaee & Emmanuel Farhi, 2022. "Supply and Demand in Disaggregated Keynesian Economies with an Application to the COVID-19 Crisis," American Economic Review, American Economic Association, vol. 112(5), pages 1397-1436, May.
    38. Rebelo, Sérgio & Eichenbaum, Martin & Trabandt, Mathias, 2022. "Epidemics in the Neoclassical and New-Keynesian Models," CEPR Discussion Papers 14903, C.E.P.R. Discussion Papers.
    39. Tallman, Ellis W. & Zaman, Saeed, 2020. "Combining survey long-run forecasts and nowcasts with BVAR forecasts using relative entropy," International Journal of Forecasting, Elsevier, vol. 36(2), pages 373-398.
    40. Han, Chuan-Hsiang & Molina, German & Fouque, Jean-Pierre, 2014. "McMC estimation of multiscale stochastic volatility models with applications," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 103(C), pages 1-11.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Carlos Cañizares Martínez & Gabe J. de Bondt & Arne Gieseck, 2023. "Forecasting housing investment," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 42(3), pages 543-565, April.
    2. Tamás Kiss & Hoang Nguyen & Pär Österholm, 2023. "Modelling Okun’s law: Does non-Gaussianity matter?," Empirical Economics, Springer, vol. 64(5), pages 2183-2213, May.
    3. Morley, James & Rodríguez-Palenzuela, Diego & Sun, Yiqiao & Wong, Benjamin, 2023. "Estimating the euro area output gap using multivariate information and addressing the COVID-19 pandemic," European Economic Review, Elsevier, vol. 153(C).
    4. Costin Radu Boldea & Bogdan Ion Boldea & Tiberiu Iancu, 2023. "The Pandemic Waves’ Impact on the Crude Oil Price and the Rise of Consumer Price Index: Case Study for Six European Countries," Sustainability, MDPI, vol. 15(8), pages 1-15, April.
    5. Haderer, Michaela, 2022. "An Estimated DSGE Model of the Euro Area with Expectations about the Timing and Nature of Liftoff from the Lower Bound," Working Papers 2022-05, University of Sydney, School of Economics.
    6. Zeynep Kantur & Gülserim Özcan, 2022. "Dissecting Turkish inflation: theory, fact, and illusion," Economic Change and Restructuring, Springer, vol. 55(3), pages 1543-1553, August.
    7. Doojav, Gan-Ochir, 2021. "Socio-economic recovery from the Covid-19 pandemic: Macroeconomic impacts and policy issues in Mongolia," MPRA Paper 111197, University Library of Munich, Germany.
    8. Gan-Ochir Doojav, 2023. "Macroeconomic Effects of Covid-19 in a Commodity-Exporting Economy: Evidence from Mongolia," Emerging Markets Finance and Trade, Taylor & Francis Journals, vol. 59(5), pages 1323-1348, April.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Bobeica, Elena & Hartwig, Benny, 2023. "The COVID-19 shock and challenges for inflation modelling," International Journal of Forecasting, Elsevier, vol. 39(1), pages 519-539.
    2. Chiu, Ching-Wai (Jeremy) & Mumtaz, Haroon & Pintér, Gábor, 2017. "Forecasting with VAR models: Fat tails and stochastic volatility," International Journal of Forecasting, Elsevier, vol. 33(4), pages 1124-1143.
    3. Hartwig, Benny, 2022. "Bayesian VARs and prior calibration in times of COVID-19," Discussion Papers 52/2022, Deutsche Bundesbank.
    4. Ching-Wai (Jeremy) Chiu & Haroon Mumtaz & Gabor Pinter, 2014. "Fat-tails in VAR Models," Working Papers 714, Queen Mary University of London, School of Economics and Finance.
    5. Miranda-Agrippino, Silvia & Ricco, Giovanni, 2018. "Bayesian Vector Autoregressions," The Warwick Economics Research Paper Series (TWERPS) 1159, University of Warwick, Department of Economics.
    6. Joshua Chan, 2023. "BVARs and Stochastic Volatility," Papers 2310.14438, arXiv.org.
    7. Karlsson, Sune, 2013. "Forecasting with Bayesian Vector Autoregression," Handbook of Economic Forecasting, in: G. Elliott & C. Granger & A. Timmermann (ed.), Handbook of Economic Forecasting, edition 1, volume 2, chapter 0, pages 791-897, Elsevier.
    8. Andrea Carriero & Todd E. Clark & Massimiliano Marcellino & Elmar Mertens, 2021. "Addressing COVID-19 Outliers in BVARs with Stochastic Volatility," Working Papers 21-02R, Federal Reserve Bank of Cleveland, revised 09 Aug 2021.
    9. Chiu, Ching-Wai (Jeremy) & Mumtaz, Haroon & Pinter, Gabor, 2016. "VAR models with non-Gaussian shocks," LSE Research Online Documents on Economics 86238, London School of Economics and Political Science, LSE Library.
    10. Knut Are Aastveit & Andrea Carriero & Todd E. Clark & Massimiliano Marcellino, 2017. "Have Standard VARS Remained Stable Since the Crisis?," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 32(5), pages 931-951, August.
    11. repec:hal:spmain:info:hdl:2441/27od5pb99881folvtfs8s3k16l is not listed on IDEAS
    12. Marta Bañbura & Danilo Leiva-León & Jan-Oliver Menz, 2021. "Do inflation expectations improve model-based inflation Forecasts?," Working Papers 2138, Banco de España.
    13. Tallman, Ellis W. & Zaman, Saeed, 2020. "Combining survey long-run forecasts and nowcasts with BVAR forecasts using relative entropy," International Journal of Forecasting, Elsevier, vol. 36(2), pages 373-398.
    14. Magnus Reif, 2020. "Macroeconomics, Nonlinearities, and the Business Cycle," ifo Beiträge zur Wirtschaftsforschung, ifo Institute - Leibniz Institute for Economic Research at the University of Munich, number 87.
    15. Joshua C. C. Chan, 2019. "Large Bayesian vector autoregressions," CAMA Working Papers 2019-19, Centre for Applied Macroeconomic Analysis, Crawford School of Public Policy, The Australian National University.
    16. Joshua C. C. Chan & Liana Jacobi & Dan Zhu, 2022. "An automated prior robustness analysis in Bayesian model comparison," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 37(3), pages 583-602, April.
    17. Antonio M. Conti & Andrea Nobili & Federico M. Signoretti, 2018. "Bank capital constraints, lending supply and economic activity," Temi di discussione (Economic working papers) 1199, Bank of Italy, Economic Research and International Relations Area.
    18. Antolín-Díaz, Juan & Drechsel, Thomas & Petrella, Ivan, 2024. "Advances in nowcasting economic activity: The role of heterogeneous dynamics and fat tails," Journal of Econometrics, Elsevier, vol. 238(2).
    19. Tamás Kiss & Hoang Nguyen & Pär Österholm, 2023. "Modelling Okun’s law: Does non-Gaussianity matter?," Empirical Economics, Springer, vol. 64(5), pages 2183-2213, May.
    20. Joshua C. C. Chan, 2020. "Large Bayesian VARs: A Flexible Kronecker Error Covariance Structure," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 38(1), pages 68-79, January.
    21. Andrea Carriero & Francesco Corsello & Massimiliano Marcellino, 2022. "The global component of inflation volatility," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 37(4), pages 700-721, June.

    More about this item

    Keywords

    COVID-19; forecasting; inflation; student's t errors; tilting; VAR;
    All these keywords.

    JEL classification:

    • C53 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Forecasting and Prediction Models; Simulation Methods
    • E31 - Macroeconomics and Monetary Economics - - Prices, Business Fluctuations, and Cycles - - - Price Level; Inflation; Deflation
    • E37 - Macroeconomics and Monetary Economics - - Prices, Business Fluctuations, and Cycles - - - Forecasting and Simulation: Models and Applications

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ecb:ecbwps:20212558. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Official Publications (email available below). General contact details of provider: https://edirc.repec.org/data/emieude.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.