IDEAS home Printed from https://ideas.repec.org/p/ces/ceswps/_4334.html
   My bibliography  Save this paper

Green Paradox and Directed Technical Change: The Effect of Subsidies to Clean R&D

Author

Listed:
  • Julien Daubanes
  • André Grimaud
  • Luc Rougé

Abstract

We borrow standard assumptions from the non-renewable-resource-taxation and from the directed-technical-change literatures, to take a full account of the incentives to perform R&D activities in a dirty-resource sector and in a clean-resource-substitute sector. We show that a gradual rise in the subsidies to clean R&D activities causes a less rapid resource extraction, because it enhances the long-run resource productivity. Our result contradicts the green-paradox conjecture that technical improvements in resource substitutes accelerate resource extraction. Sector-specific innovation activities are tantamount to competing economic projects; general equilibrium with several R&D sectors implies no-arbitrage conditions that give rise to not-so-intuitive results.

Suggested Citation

  • Julien Daubanes & André Grimaud & Luc Rougé, 2013. "Green Paradox and Directed Technical Change: The Effect of Subsidies to Clean R&D," CESifo Working Paper Series 4334, CESifo.
  • Handle: RePEc:ces:ceswps:_4334
    as

    Download full text from publisher

    File URL: https://www.cesifo.org/DocDL/cesifo1_wp4334.pdf
    Download Restriction: no
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Grimaud, André & Lafforgue, Gilles & Magné, Bertrand, 2011. "Climate change mitigation options and directed technical change: A decentralized equilibrium analysis," Resource and Energy Economics, Elsevier, vol. 33(4), pages 938-962.
    2. anonymous, 1995. "Does the bouncing ball lead to economic growth?," Regional Update, Federal Reserve Bank of Atlanta, issue Jul, pages 1-2,4-6.
    3. Quentin Grafton, R. & Kompas, Tom & Van Long, Ngo, 2012. "Substitution between biofuels and fossil fuels: Is there a green paradox?," Journal of Environmental Economics and Management, Elsevier, vol. 64(3), pages 328-341.
    4. Daron Acemoglu & Philippe Aghion & Leonardo Bursztyn & David Hemous, 2012. "The Environment and Directed Technical Change," American Economic Review, American Economic Association, vol. 102(1), pages 131-166, February.
    5. Cozzi, Guido & Giordani, Paolo E. & Zamparelli, Luca, 2007. "The refoundation of the symmetric equilibrium in Schumpeterian growth models," Journal of Economic Theory, Elsevier, vol. 136(1), pages 788-797, September.
    6. André Grimaud & Luc Rouge, 2008. "Environment, Directed Technical Change and Economic Policy," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 41(4), pages 439-463, December.
    7. Robert J. Barro, 2013. "Inflation and Economic Growth," Annals of Economics and Finance, Society for AEF, vol. 14(1), pages 121-144, May.
    8. Corrado Di Maria & Simone Valente, 2006. "The Direction of Technical Change in Capital-Resource Economies," CER-ETH Economics working paper series 06/50, CER-ETH - Center of Economic Research (CER-ETH) at ETH Zurich.
    9. Gaudet, Gérard & Lasserre, Pierre, 1990. "Dynamiques comparées des effets de la taxation minière," L'Actualité Economique, Société Canadienne de Science Economique, vol. 66(4), pages 467-497, décembre.
    10. Joshua S. Gans, 2012. "Innovation and Climate Change Policy," American Economic Journal: Economic Policy, American Economic Association, vol. 4(4), pages 125-145, November.
    11. Daron Acemoglu, 1998. "Why Do New Technologies Complement Skills? Directed Technical Change and Wage Inequality," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 113(4), pages 1055-1089.
    12. Hart, Rob, 2004. "Growth, environment and innovation--a model with production vintages and environmentally oriented research," Journal of Environmental Economics and Management, Elsevier, vol. 48(3), pages 1078-1098, November.
    13. Karen Pittel & Lucas Bretschger, 2010. "The implications of heterogeneous resource intensities on technical change and growth," Canadian Journal of Economics/Revue canadienne d'économique, John Wiley & Sons, vol. 43(4), pages 1173-1197, November.
    14. Philippe Aghion & Antoine Dechezleprêtre & David Hémous & Ralf Martin & John Van Reenen, 2016. "Carbon Taxes, Path Dependency, and Directed Technical Change: Evidence from the Auto Industry," Journal of Political Economy, University of Chicago Press, vol. 124(1), pages 1-51.
    15. Sjak Smulders & Corrado Di Maria, 2012. "The Cost of Environmental Policy under Induced Technical Change," CESifo Working Paper Series 3886, CESifo.
    16. Reyer Gerlagh, 2011. "Too Much Oil," CESifo Economic Studies, CESifo Group, vol. 57(1), pages 79-102, March.
    17. Julien Daubanes & Pierre Lasserre, 2012. "Non-Renewable Resource Supply: Substitution Effect, Compensation Effect, and All That," CIRANO Working Papers 2012s-28, CIRANO.
    18. Xavier Sala-I-Martin, 1997. "Transfers, Social Safety Nets, and Economic Growth," IMF Staff Papers, Palgrave Macmillan, vol. 44(1), pages 81-102, March.
    19. Withagen, Cees, 1994. "Pollution and exhaustibility of fossil fuels," Resource and Energy Economics, Elsevier, vol. 16(3), pages 235-242, August.
    20. Michael Hoel, 2010. "Is there a Green Paradox?," CESifo Working Paper Series 3168, CESifo.
    21. van der Ploeg, Frederick & Withagen, Cees, 2012. "Is there really a green paradox?," Journal of Environmental Economics and Management, Elsevier, vol. 64(3), pages 342-363.
    22. Hans-Werner Sinn, 2008. "Public policies against global warming: a supply side approach," International Tax and Public Finance, Springer;International Institute of Public Finance, vol. 15(4), pages 360-394, August.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Dechezlepretre, Antoine & Martin, Ralf & Mohnen, Myra, 2014. "Knowledge spillovers from clean and dirty technologies," LSE Research Online Documents on Economics 60501, London School of Economics and Political Science, LSE Library.
    2. Johannes Pfeiffer, 2017. "Fossil Resources and Climate Change – The Green Paradox and Resource Market Power Revisited in General Equilibrium," ifo Beiträge zur Wirtschaftsforschung, ifo Institute - Leibniz Institute for Economic Research at the University of Munich, number 77.
    3. Frederick van der Ploeg & Cees Withagen, 2015. "Global Warming and the Green Paradox: A Review of Adverse Effects of Climate Policies," Review of Environmental Economics and Policy, Association of Environmental and Resource Economists, vol. 9(2), pages 285-303.
    4. van der Ploeg, Frederick & Withagen, Cees, 2012. "Is there really a green paradox?," Journal of Environmental Economics and Management, Elsevier, vol. 64(3), pages 342-363.
    5. Christian Haas and Karol Kempa, 2018. "Directed Technical Change and Energy Intensity Dynamics: Structural Change vs. Energy Efficiency," The Energy Journal, International Association for Energy Economics, vol. 0(Number 4).
    6. Frederick Van Der Ploeg & Cees Withagen, 2014. "Growth, Renewables, And The Optimal Carbon Tax," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 55(1), pages 283-311, February.
    7. Peter K. Kruse-Andersen, 2019. "Directed Technical Change, Environmental Sustainability, and Population Growth," Discussion Papers 19-12, University of Copenhagen. Department of Economics.
    8. Kempa, Karol & Haas, Christian, 2016. "Directed Technical Change and Energy Intensity Dynamics: Structural Change vs. Energy Efficiency," VfS Annual Conference 2016 (Augsburg): Demographic Change 145722, Verein für Socialpolitik / German Economic Association.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Grimaud, André & Rouge, Luc, 2014. "Carbon sequestration, economic policies and growth," Resource and Energy Economics, Elsevier, vol. 36(2), pages 307-331.
    2. Corrado Di Maria & Sjak Smulders & Edwin Werf, 2017. "Climate Policy with Tied Hands: Optimal Resource Taxation Under Implementation Lags," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 66(3), pages 537-551, March.
    3. Smulders, Sjak & Withagen, Cees, 2012. "Green growth -- lessons from growth theory," Policy Research Working Paper Series 6230, The World Bank.
    4. Frederick van der Ploeg, 2018. "Breakthrough Renewables and the Green Paradox," FinanzArchiv: Public Finance Analysis, Mohr Siebeck, Tübingen, vol. 74(1), pages 52-70, March.
    5. Casey, Gregory, "undated". "Energy Efficiency and Directed Technical Change: Implications for Climate Change Mitigation," 2017 Annual Meeting, July 30-August 1, Chicago, Illinois 259959, Agricultural and Applied Economics Association.
    6. Frederick van der Ploeg, 2013. "Cumulative Carbon Emissions and the Green Paradox," Annual Review of Resource Economics, Annual Reviews, vol. 5(1), pages 281-300, June.
    7. Peter K. Kruse-Andersen, 2019. "Directed Technical Change, Environmental Sustainability, and Population Growth," Discussion Papers 19-12, University of Copenhagen. Department of Economics.
    8. van der Ploeg, Frederick & Withagen, Cees, 2012. "Is there really a green paradox?," Journal of Environmental Economics and Management, Elsevier, vol. 64(3), pages 342-363.
    9. Michielsen, Thomas O., 2014. "Brown backstops versus the green paradox," Journal of Environmental Economics and Management, Elsevier, vol. 68(1), pages 87-110.
    10. Durmaz, Tunç, 2018. "The economics of CCS: Why have CCS technologies not had an international breakthrough?," Renewable and Sustainable Energy Reviews, Elsevier, vol. 95(C), pages 328-340.
    11. Mikhail Golosov & John Hassler & Per Krusell & Aleh Tsyvinski, 2014. "Optimal Taxes on Fossil Fuel in General Equilibrium," Econometrica, Econometric Society, vol. 82(1), pages 41-88, January.
    12. Wei Jin & ZhongXiang Zhang, 2018. "Capital Accumulation, Green Paradox, and Stranded Assets: An Endogenous Growth Perspective," Working Papers 2018.33, Fondazione Eni Enrico Mattei.
    13. Naqvi, Asjad & Stockhammer, Engelbert, 2018. "Directed Technological Change in a Post-Keynesian Ecological Macromodel," Ecological Economics, Elsevier, vol. 154(C), pages 168-188.
    14. Sjak Smulders & Michael Toman & Cees Withagen, 2014. "Growth Theory and “Green Growthâ€," OxCarre Working Papers 135, Oxford Centre for the Analysis of Resource Rich Economies, University of Oxford.
    15. van den Bijgaart, Inge, 2016. "Essays in environmental economics and policy," Other publications TiSEM 298bee2a-cb08-4173-9fe1-8, Tilburg University, School of Economics and Management.
    16. Groth, Christian & Ricci, Francesco, 2011. "Optimal growth when environmental quality is a research asset," Research in Economics, Elsevier, vol. 65(4), pages 340-352, December.
    17. Julien Daubanes & Ruxanda Berlinschi, 2009. "Prendre d'une main et donner de l'autre : taxation des produits pétroliers et aide internationale," Economie & Prévision, La Documentation Française, vol. 0(4), pages 21-37.
    18. Johannes Pfeiffer, 2017. "Fossil Resources and Climate Change – The Green Paradox and Resource Market Power Revisited in General Equilibrium," ifo Beiträge zur Wirtschaftsforschung, ifo Institute - Leibniz Institute for Economic Research at the University of Munich, number 77.
    19. Nachtigall, Daniel & Rübbelke, Dirk, 2016. "The green paradox and learning-by-doing in the renewable energy sector," Resource and Energy Economics, Elsevier, vol. 43(C), pages 74-92.
    20. Burghaus, Kerstin & Funk, Peter, 2013. "Endogenous Growth, Green Innovation and GDP Deceleration in a World with Polluting Production Inputs," VfS Annual Conference 2013 (Duesseldorf): Competition Policy and Regulation in a Global Economic Order 80022, Verein für Socialpolitik / German Economic Association.

    More about this item

    Keywords

    non-renewable resources; directed technical change; green paradox; environmental policy; R&D subsidies;
    All these keywords.

    JEL classification:

    • Q32 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Nonrenewable Resources and Conservation - - - Exhaustible Resources and Economic Development
    • O32 - Economic Development, Innovation, Technological Change, and Growth - - Innovation; Research and Development; Technological Change; Intellectual Property Rights - - - Management of Technological Innovation and R&D
    • O41 - Economic Development, Innovation, Technological Change, and Growth - - Economic Growth and Aggregate Productivity - - - One, Two, and Multisector Growth Models

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ces:ceswps:_4334. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Klaus Wohlrabe (email available below). General contact details of provider: https://edirc.repec.org/data/cesifde.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.