IDEAS home Printed from https://ideas.repec.org/p/ant/wpaper/2012002.html
   My bibliography  Save this paper

I-optimal versus D-optimal split-plot response surface designs

Author

Listed:
  • JONES, Bradley
  • GOOS, Peter

Abstract

Response surface experiments often involve only quantitative factors, and the response is fit using a full quadratic model in these factors. The term response surface implies that interest in these studies is more on prediction than parameter estimation since the points on the fitted surface are predicted responses. When computing optimal designs for response surface experiments, it therefore makes sense to focus attention on the predictive capability of the designs. However, the most popular criterion for creating optimal experimental designs is the D-optimality criterion, which aims to minimize the variance of the factor-effect estimates in an omnibus sense. Because I-optimal designs minimize the average variance of prediction over the region of experimentation, their focus is clearly on prediction. Therefore, the I-optimality criterion seems to be a more appropriate one than the D-optimality criterion for generating response surface designs. Here, we introduce I-optimal design of split-plot response surface experiments. We show through several examples that I-optimal split-plot designs provide substantial benefits in terms of prediction compared to D-optimal split-plot designs, while also performing very well in terms of the precision of the factor-effect estimates.

Suggested Citation

  • JONES, Bradley & GOOS, Peter, 2012. "I-optimal versus D-optimal split-plot response surface designs," Working Papers 2012002, University of Antwerp, Faculty of Business and Economics.
  • Handle: RePEc:ant:wpaper:2012002
    as

    Download full text from publisher

    File URL: https://repository.uantwerpen.be/docman/irua/06d157/da102bc1.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. MACHARIA, Harrison & GOOS, Peter, 2010. "D-optimal and D-efficient equivalent-estimation second-order split-plot designs," Working Papers 2010011, University of Antwerp, Faculty of Business and Economics.
    2. Arnouts, Heidi & Goos, Peter, 2010. "Update formulas for split-plot and block designs," Computational Statistics & Data Analysis, Elsevier, vol. 54(12), pages 3381-3391, December.
    3. Bradley Jones & Peter Goos, 2007. "A candidate‐set‐free algorithm for generating D‐optimal split‐plot designs," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 56(3), pages 347-364, May.
    4. SCHOEN, Eric D. & JONES, Bradley & GOOS, Peter, 2010. "Split-plot experiments with factor-dependent whole-plot sizes," Working Papers 2010001, University of Antwerp, Faculty of Business and Economics.
    5. Peter Goos, 2006. "Optimal versus orthogonal and equivalent‐estimation design of blocked and split‐plot experiments," Statistica Neerlandica, Netherlands Society for Statistics and Operations Research, vol. 60(3), pages 361-378, August.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Sambo, Francesco & Borrotti, Matteo & Mylona, Kalliopi, 2014. "A coordinate-exchange two-phase local search algorithm for the D- and I-optimal designs of split-plot experiments," Computational Statistics & Data Analysis, Elsevier, vol. 71(C), pages 1193-1207.
    2. Marcin Dutka & Mario Ditaranto & Terese Løvås, 2015. "Application of a Central Composite Design for the Study of NO x Emission Performance of a Low NO x Burner," Energies, MDPI, vol. 8(5), pages 1-22, April.
    3. SYAFITRI, Utami & SARTONO, Bagus & GOOS, Peter, 2015. "D- and I-optimal design of mixture experiments in the presence of ingredient availability constraints," Working Papers 2015003, University of Antwerp, Faculty of Business and Economics.
    4. GOOS, Peter & JONES, Bradley & SYAFITRI, Utami, 2013. "I-optimal mixture designs," Working Papers 2013033, University of Antwerp, Faculty of Business and Economics.
    5. Elena Holl & Anastasia Oskina & Urs Baier & Andreas Lemmer, 2023. "Optimization of Thermodynamic Parameters of the Biological Hydrogen Methanation in a Trickle-Bed Reactor for the Conditioning of Biogas to Biomethane," Energies, MDPI, vol. 16(12), pages 1-13, June.
    6. Yahaya, Ahmad Zubair & Somalu, Mahendra Rao & Muchtar, Andanastuti & Sulaiman, Shaharin Anwar & Wan Daud, Wan Ramli, 2019. "Effect of particle size and temperature on gasification performance of coconut and palm kernel shells in downdraft fixed-bed reactor," Energy, Elsevier, vol. 175(C), pages 931-940.
    7. ARNOUTS, Heidi & GOOS, Peter, 2013. "Staggered-level designs for response surface modeling," Working Papers 2013027, University of Antwerp, Faculty of Business and Economics.
    8. Borrotti, Matteo & Sambo, Francesco & Mylona, Kalliopi, 2023. "Multi-objective optimisation of split-plot designs," Econometrics and Statistics, Elsevier, vol. 28(C), pages 163-172.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Sambo, Francesco & Borrotti, Matteo & Mylona, Kalliopi, 2014. "A coordinate-exchange two-phase local search algorithm for the D- and I-optimal designs of split-plot experiments," Computational Statistics & Data Analysis, Elsevier, vol. 71(C), pages 1193-1207.
    2. Smucker, Byran J. & Castillo, Enrique del & Rosenberger, James L., 2012. "Model-robust designs for split-plot experiments," Computational Statistics & Data Analysis, Elsevier, vol. 56(12), pages 4111-4121.
    3. Kalliopi Mylona & Harrison Macharia & Peter Goos, 2013. "Three-level equivalent-estimation split-plot designs based on subset and supplementary difference set designs," IISE Transactions, Taylor & Francis Journals, vol. 45(11), pages 1153-1165.
    4. ARNOUTS, Heidi & GOOS, Peter, 2013. "Staggered-level designs for response surface modeling," Working Papers 2013027, University of Antwerp, Faculty of Business and Economics.
    5. Xiaodong Li & Xu He & Yuanzhen He & Hui Zhang & Zhong Zhang & Dennis K. J. Lin, 2017. "The Design and Analysis for the Icing Wind Tunnel Experiment of a New Deicing Coating," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 112(520), pages 1417-1429, October.
    6. Palhazi Cuervo, Daniel & Goos, Peter & Sörensen, Kenneth, 2017. "An algorithmic framework for generating optimal two-stratum experimental designs," Computational Statistics & Data Analysis, Elsevier, vol. 115(C), pages 224-249.
    7. Bradley Jones & Peter Goos, 2009. "D-optimal design of split-split-plot experiments," Biometrika, Biometrika Trust, vol. 96(1), pages 67-82.
    8. Arnouts, Heidi & Goos, Peter, 2010. "Update formulas for split-plot and block designs," Computational Statistics & Data Analysis, Elsevier, vol. 54(12), pages 3381-3391, December.
    9. Moein Saleh & Ming-Hung Kao & Rong Pan, 2017. "Design D-optimal event-related functional magnetic resonance imaging experiments," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 66(1), pages 73-91, January.
    10. CUERVO, Daniel Palhazi & GOOS, Peter & SÖRENSEN, Kenneth, 2013. "An iterated local search algorithm for the construction of large scale D-optimal experimental designs," Working Papers 2013006, University of Antwerp, Faculty of Business and Economics.
    11. SYAFITRI, Utami & SARTONO, Bagus & GOOS, Peter, 2015. "D- and I-optimal design of mixture experiments in the presence of ingredient availability constraints," Working Papers 2015003, University of Antwerp, Faculty of Business and Economics.
    12. Borrotti, Matteo & Sambo, Francesco & Mylona, Kalliopi, 2023. "Multi-objective optimisation of split-plot designs," Econometrics and Statistics, Elsevier, vol. 28(C), pages 163-172.
    13. ARNOUTS, Heidi & GOOS, Peter, 2009. "Design and analysis of industrial strip-plot experiments," Working Papers 2009007, University of Antwerp, Faculty of Business and Economics.
    14. Kessels, Roselinde & Goos, Peter & Vandebroek, Martina, 2008. "Optimal designs for conjoint experiments," Computational Statistics & Data Analysis, Elsevier, vol. 52(5), pages 2369-2387, January.
    15. SCHOEN, Eric D. & JONES, Bradley & GOOS, Peter, 2010. "Split-plot experiments with factor-dependent whole-plot sizes," Working Papers 2010001, University of Antwerp, Faculty of Business and Economics.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ant:wpaper:2012002. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Joeri Nys (email available below). General contact details of provider: https://edirc.repec.org/data/ftufsbe.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.