IDEAS home Printed from https://ideas.repec.org/p/abo/neswpt/w0162.html
   My bibliography  Save this paper

Instrumental variables estimation and inference in the presence of many exogenous regressors

Author

Listed:
  • Stanislav Anatolyev

    (New Economic School)

Abstract

We consider a standard instrumental variables model contaminated by the presence of a large number of exogenous regressors. In an asymptotic framework where this number is proportional to the sample size, we study the impact of their ratio on the validity of existing estimators and tests. When the instruments are few, the inference using the conventional 2SLS estimator and associated t and J statistics, as well as the Anderson-Rubin and Kleibergen tests, is still valid. When the instruments are many, the LIML estimator remains consistent, but the presence of many exogenous regressors changes its asymptotic variance. Moreover, the conventional bias correction of the 2SLS estimator is no longer appropriate. We provide asymptotically correct versions of bias correction for the 2SLS estimator, derive its asymptotically correct variance estimator, extend the Hansen-Hausman-Newey LIML variance estimator to the case of many exogenous regressors, and propose asymptotically valid modi cations of the J overidenti cation tests based on the LIML and bias corrected 2SLS estimators.

Suggested Citation

  • Stanislav Anatolyev, 2012. "Instrumental variables estimation and inference in the presence of many exogenous regressors," Working Papers w0162, New Economic School (NES).
  • Handle: RePEc:abo:neswpt:w0162
    as

    Download full text from publisher

    File URL: https://www.nes.ru/files/Preprints-resh/WP162-March2012.pdf
    Download Restriction: no
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Chao, John C. & Swanson, Norman R. & Hausman, Jerry A. & Newey, Whitney K. & Woutersen, Tiemen, 2012. "Asymptotic Distribution Of Jive In A Heteroskedastic Iv Regression With Many Instruments," Econometric Theory, Cambridge University Press, vol. 28(1), pages 42-86, February.
    2. Jerry A. Hausman & Whitney K. Newey & Tiemen Woutersen & John C. Chao & Norman R. Swanson, 2012. "Instrumental variable estimation with heteroskedasticity and many instruments," Quantitative Economics, Econometric Society, vol. 3(2), pages 211-255, July.
    3. Donald, Stephen G & Newey, Whitney K, 2001. "Choosing the Number of Instruments," Econometrica, Econometric Society, vol. 69(5), pages 1161-1191, September.
    4. John C. Chao & Norman R. Swanson, 2005. "Consistent Estimation with a Large Number of Weak Instruments," Econometrica, Econometric Society, vol. 73(5), pages 1673-1692, September.
    5. Anderson, T.W. & Kunitomo, Naoto & Matsushita, Yukitoshi, 2010. "On the asymptotic optimality of the LIML estimator with possibly many instruments," Journal of Econometrics, Elsevier, vol. 157(2), pages 191-204, August.
    6. Anatolyev, Stanislav & Gospodinov, Nikolay, 2011. "Specification Testing In Models With Many Instruments," Econometric Theory, Cambridge University Press, vol. 27(2), pages 427-441, April.
    7. H. Kelejian, Harry & Prucha, Ingmar R., 2001. "On the asymptotic distribution of the Moran I test statistic with applications," Journal of Econometrics, Elsevier, vol. 104(2), pages 219-257, September.
    8. Hasselt, Martijn van, 2010. "Many Instruments Asymptotic Approximations Under Nonnormal Error Distributions," Econometric Theory, Cambridge University Press, vol. 26(2), pages 633-645, April.
    9. Witte, Ann D & Sumka, Howard J & Erekson, Homer, 1979. "An Estimate of a Structural Hedonic Price Model of the Housing Market: An Application of Rosen's Theory of Implicit Markets," Econometrica, Econometric Society, vol. 47(5), pages 1151-1173, September.
    10. Hanson, Samuel G. & Pesaran, M. Hashem & Schuermann, Til, 2008. "Firm heterogeneity and credit risk diversification," Journal of Empirical Finance, Elsevier, vol. 15(4), pages 583-612, September.
    11. Hansen, Christian & Hausman, Jerry & Newey, Whitney, 2008. "Estimation With Many Instrumental Variables," Journal of Business & Economic Statistics, American Statistical Association, vol. 26, pages 398-422.
    12. Anatolyev, Stanislav, 2012. "Inference in regression models with many regressors," Journal of Econometrics, Elsevier, vol. 170(2), pages 368-382.
    13. Kamerschen, David R. & Porter, David V., 2004. "The demand for residential, industrial and total electricity, 1973-1998," Energy Economics, Elsevier, vol. 26(1), pages 87-100, January.
    14. Rosenzweig, Mark R & Schultz, T Paul, 1983. "Estimating a Household Production Function: Heterogeneity, the Demand for Health Inputs, and Their Effects on Birth Weight," Journal of Political Economy, University of Chicago Press, vol. 91(5), pages 723-746, October.
    15. T. W. Anderson & Naoto Kunitomo & Yukitoshi Matsushita, 2008. "On the Asymptotic Optimality of the LIML Estimator with Possibly Many Instruments," CIRJE F-Series CIRJE-F-542, CIRJE, Faculty of Economics, University of Tokyo.
    16. Corbae,Dean & Durlauf,Steven N. & Hansen,Bruce E. (ed.), 2006. "Econometric Theory and Practice," Cambridge Books, Cambridge University Press, number 9780521807234.
    17. Bekker, Paul A, 1994. "Alternative Approximations to the Distributions of Instrumental Variable Estimators," Econometrica, Econometric Society, vol. 62(3), pages 657-681, May.
    18. Adelchi Azzalini & Antonella Capitanio, 2003. "Distributions generated by perturbation of symmetry with emphasis on a multivariate skew t‐distribution," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 65(2), pages 367-389, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Eric Gautier & Christiern Rose, 2022. "Fast, Robust Inference for Linear Instrumental Variables Models using Self-Normalized Moments," Papers 2211.02249, arXiv.org, revised Nov 2022.
    2. Tiziano Arduini & Eleonora Patacchini & Edoardo Rainone, 2014. "Identification and Estimation of Outcome Response with Heterogeneous Treatment Externalities," EIEF Working Papers Series 1407, Einaudi Institute for Economics and Finance (EIEF), revised Sep 2014.
    3. Michal Kolesár & Raj Chetty & John Friedman & Edward Glaeser & Guido W. Imbens, 2015. "Identification and Inference With Many Invalid Instruments," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 33(4), pages 474-484, October.
    4. Alyssa G. Anderson & Wenxin Du & Bernd Schlusche, 2021. "Arbitrage Capital of Global Banks," Finance and Economics Discussion Series 2021-032, Board of Governors of the Federal Reserve System (U.S.).
    5. Anatolyev, Stanislav & Sølvsten, Mikkel, 2023. "Testing many restrictions under heteroskedasticity," Journal of Econometrics, Elsevier, vol. 236(1).
    6. Daniel A. Broxterman & William D. Larson, 2020. "An empirical examination of shift‐share instruments," Journal of Regional Science, Wiley Blackwell, vol. 60(4), pages 677-711, September.
    7. Eugenio Levi & Isabelle Sin & Steven Stillman, 2024. "The lasting impact of external shocks on political opinions and populist voting," Economic Inquiry, Western Economic Association International, vol. 62(1), pages 349-374, January.
    8. Kolesár, Michal, 2018. "Minimum distance approach to inference with many instruments," Journal of Econometrics, Elsevier, vol. 204(1), pages 86-100.
    9. Paul Goldsmith-Pinkham & Isaac Sorkin & Henry Swift, 2020. "Bartik Instruments: What, When, Why, and How," American Economic Review, American Economic Association, vol. 110(8), pages 2586-2624, August.
    10. Zhenhong Huang & Chen Wang & Jianfeng Yao, 2023. "A specification test for the strength of instrumental variables," Papers 2302.14396, arXiv.org.
    11. Kirill S. Evdokimov & Michal Kolesár, 2018. "Inference in Instrumental Variable Regression Analysis with Heterogeneous Treatment Effects," Working Papers 2018-16, Princeton University. Economics Department..

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wang, Wenjie & Kaffo, Maximilien, 2016. "Bootstrap inference for instrumental variable models with many weak instruments," Journal of Econometrics, Elsevier, vol. 192(1), pages 231-268.
    2. Michal Kolesár & Raj Chetty & John Friedman & Edward Glaeser & Guido W. Imbens, 2015. "Identification and Inference With Many Invalid Instruments," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 33(4), pages 474-484, October.
    3. Kolesár, Michal, 2018. "Minimum distance approach to inference with many instruments," Journal of Econometrics, Elsevier, vol. 204(1), pages 86-100.
    4. Carrasco, Marine & Tchuente, Guy, 2015. "Regularized LIML for many instruments," Journal of Econometrics, Elsevier, vol. 186(2), pages 427-442.
    5. Dennis Lim & Wenjie Wang & Yichong Zhang, 2022. "A Conditional Linear Combination Test with Many Weak Instruments," Papers 2207.11137, arXiv.org, revised Apr 2023.
    6. Xuexin WANG, 2021. "Instrumental variable estimation via a continuum of instruments with an application to estimating the elasticity of intertemporal substitution in consumption," Working Papers 2021-11-06, Wang Yanan Institute for Studies in Economics (WISE), Xiamen University.
    7. Yoonseok Lee & Yu Zhou, 2015. "Averaged Instrumental Variables Estimators," Center for Policy Research Working Papers 180, Center for Policy Research, Maxwell School, Syracuse University.
    8. Eric Gautier & Christiern Rose, 2022. "Fast, Robust Inference for Linear Instrumental Variables Models using Self-Normalized Moments," Papers 2211.02249, arXiv.org, revised Nov 2022.
    9. Zhenhong Huang & Chen Wang & Jianfeng Yao, 2023. "Assessing the strength of many instruments with the first-stage F and Cragg-Donald statistics," Papers 2302.14423, arXiv.org.
    10. Zhenhong Huang & Chen Wang & Jianfeng Yao, 2023. "A specification test for the strength of instrumental variables," Papers 2302.14396, arXiv.org.
    11. Abutaliev, Albert & Anatolyev, Stanislav, 2013. "Asymptotic variance under many instruments: Numerical computations," Economics Letters, Elsevier, vol. 118(2), pages 272-274.
    12. Bekker, Paul A. & Crudu, Federico, 2015. "Jackknife instrumental variable estimation with heteroskedasticity," Journal of Econometrics, Elsevier, vol. 185(2), pages 332-342.
    13. Crudu, Federico & Mellace, Giovanni & Sándor, Zsolt, 2021. "Inference In Instrumental Variable Models With Heteroskedasticity And Many Instruments," Econometric Theory, Cambridge University Press, vol. 37(2), pages 281-310, April.
    14. Calhoun, Gray, 2011. "Hypothesis testing in linear regression when k/n is large," Journal of Econometrics, Elsevier, vol. 165(2), pages 163-174.
    15. Liu, Xiaodong & Lee, Lung-fei, 2010. "GMM estimation of social interaction models with centrality," Journal of Econometrics, Elsevier, vol. 159(1), pages 99-115, November.
    16. Johannes W. Ligtenberg, 2023. "Inference in IV models with clustered dependence, many instruments and weak identification," Papers 2306.08559, arXiv.org, revised Mar 2024.
    17. Lee, Yoonseok & Okui, Ryo, 2012. "Hahn–Hausman test as a specification test," Journal of Econometrics, Elsevier, vol. 167(1), pages 133-139.
    18. Wang, Wenjie & Doko Tchatoka, Firmin, 2018. "On Bootstrap inconsistency and Bonferroni-based size-correction for the subset Anderson–Rubin test under conditional homoskedasticity," Journal of Econometrics, Elsevier, vol. 207(1), pages 188-211.
    19. Yoonseok Lee & Ryo Okui, 2009. "A Specification Test for Instrumental Variables Regression with Many Instruments," Cowles Foundation Discussion Papers 1741, Cowles Foundation for Research in Economics, Yale University.
    20. Sølvsten, Mikkel, 2020. "Robust estimation with many instruments," Journal of Econometrics, Elsevier, vol. 214(2), pages 495-512.

    More about this item

    Keywords

    instrumental variables regression; many instruments; many exogenous regressors; 2SLS estimator; LIML estimator; bias correction; t test; J test; AndersonRubin test; Kleibergen test;
    All these keywords.

    JEL classification:

    • C12 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Hypothesis Testing: General
    • C21 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Cross-Sectional Models; Spatial Models; Treatment Effect Models

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:abo:neswpt:w0162. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Vladimir Ivanyukhin (email available below). General contact details of provider: https://edirc.repec.org/data/nerasru.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.