IDEAS home Printed from https://ideas.repec.org/a/wly/envmet/v34y2023i3ne2785.html
   My bibliography  Save this article

Multivariate receptor modeling with widely dispersed Lichens as bioindicators of air quality

Author

Listed:
  • Matthew Heiner
  • Taylor Grimm
  • Hayden Smith
  • Steven D. Leavitt
  • William F. Christensen
  • Gregory T. Carling
  • Larry L. St. Clair

Abstract

Biomonitoring studies evaluating air quality via airborne element accumulation patterns in lichens typically control variability by focusing on narrow geographic regions and short time windows. Using samples of the widespread “rock‐posy” lichen sampled across the Intermountain Region of the United States, we investigate whether accumulation patterns of generic pollution sources are detectable on broad geographic and temporal scales. We develop a novel Bayesian multivariate receptor modeling (BMRM) approach that sharpens detection and discrimination of candidate pollution sources through (i) regularization of source contributions to each sample and (ii) incorporating estimated lichen secondary chemistry as a factor. Through a simulation study, we demonstrate a distinct advantage in shrinking contributions when they are truly sparse, as would be expected with heterogeneous samples from dispersed collection sites. We contrast analyses employing both standard and sparse BMRMs, and positive matrix factorization (PMF). The sparse model better maintains source identity, as specified though informative prior distributions on elemental profiles. We advocate quantitative profile matching, which reveals that PMF primarily captures variations of the baseline profile for lichen secondary chemistry. Both PMF and BMRM results suggest that the most detectable signatures relate to aeolian dust deposition, while spatial patterns hint at sporadic anthropogenic influence.

Suggested Citation

  • Matthew Heiner & Taylor Grimm & Hayden Smith & Steven D. Leavitt & William F. Christensen & Gregory T. Carling & Larry L. St. Clair, 2023. "Multivariate receptor modeling with widely dispersed Lichens as bioindicators of air quality," Environmetrics, John Wiley & Sons, Ltd., vol. 34(3), May.
  • Handle: RePEc:wly:envmet:v:34:y:2023:i:3:n:e2785
    DOI: 10.1002/env.2785
    as

    Download full text from publisher

    File URL: https://doi.org/10.1002/env.2785
    Download Restriction: no

    File URL: https://libkey.io/10.1002/env.2785?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Carpenter, Bob & Gelman, Andrew & Hoffman, Matthew D. & Lee, Daniel & Goodrich, Ben & Betancourt, Michael & Brubaker, Marcus & Guo, Jiqiang & Li, Peter & Riddell, Allen, 2017. "Stan: A Probabilistic Programming Language," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 76(i01).
    2. Amber J. Hackstadt & Roger D. Peng, 2014. "A Bayesian multivariate receptor model for estimating source contributions to particulate matter pollution using national databases," Environmetrics, John Wiley & Sons, Ltd., vol. 25(7), pages 513-527, November.
    3. Anirban Bhattacharya & Debdeep Pati & Natesh S. Pillai & David B. Dunson, 2015. "Dirichlet--Laplace Priors for Optimal Shrinkage," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 110(512), pages 1479-1490, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Posch, Konstantin & Truden, Christian & Hungerländer, Philipp & Pilz, Jürgen, 2022. "A Bayesian approach for predicting food and beverage sales in staff canteens and restaurants," International Journal of Forecasting, Elsevier, vol. 38(1), pages 321-338.
    2. Niloy Biswas & Anirban Bhattacharya & Pierre E. Jacob & James E. Johndrow, 2022. "Coupling‐based convergence assessment of some Gibbs samplers for high‐dimensional Bayesian regression with shrinkage priors," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 84(3), pages 973-996, July.
    3. Francis,David C. & Kubinec ,Robert, 2022. "Beyond Political Connections : A Measurement Model Approach to Estimating Firm-levelPolitical Influence in 41 Economies," Policy Research Working Paper Series 10119, The World Bank.
    4. Yongping Bao & Ludwig Danwitz & Fabian Dvorak & Sebastian Fehrler & Lars Hornuf & Hsuan Yu Lin & Bettina von Helversen, 2022. "Similarity and Consistency in Algorithm-Guided Exploration," CESifo Working Paper Series 10188, CESifo.
    5. Torsten Heinrich & Jangho Yang & Shuanping Dai, 2020. "Growth, development, and structural change at the firm-level: The example of the PR China," Papers 2012.14503, arXiv.org.
    6. Xin Xu & Yang Lu & Yupeng Zhou & Zhiguo Fu & Yanjie Fu & Minghao Yin, 2021. "An Information-Explainable Random Walk Based Unsupervised Network Representation Learning Framework on Node Classification Tasks," Mathematics, MDPI, vol. 9(15), pages 1-14, July.
    7. Martin Feldkircher & Florian Huber & Gary Koop & Michael Pfarrhofer, 2022. "APPROXIMATE BAYESIAN INFERENCE AND FORECASTING IN HUGE‐DIMENSIONAL MULTICOUNTRY VARs," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 63(4), pages 1625-1658, November.
    8. Xiaoyue Xi & Simon E. F. Spencer & Matthew Hall & M. Kate Grabowski & Joseph Kagaayi & Oliver Ratmann & Rakai Health Sciences Program and PANGEA‐HIV, 2022. "Inferring the sources of HIV infection in Africa from deep‐sequence data with semi‐parametric Bayesian Poisson flow models," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 71(3), pages 517-540, June.
    9. Joseph B. Bak-Coleman & Ian Kennedy & Morgan Wack & Andrew Beers & Joseph S. Schafer & Emma S. Spiro & Kate Starbird & Jevin D. West, 2022. "Combining interventions to reduce the spread of viral misinformation," Nature Human Behaviour, Nature, vol. 6(10), pages 1372-1380, October.
    10. Martin Guth, 2022. "Predicting Default Probabilities for Stress Tests: A Comparison of Models," Papers 2202.03110, arXiv.org.
    11. David M. Phillippo & Sofia Dias & A. E. Ades & Mark Belger & Alan Brnabic & Alexander Schacht & Daniel Saure & Zbigniew Kadziola & Nicky J. Welton, 2020. "Multilevel network meta‐regression for population‐adjusted treatment comparisons," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 183(3), pages 1189-1210, June.
    12. Joshua Chan, 2023. "BVARs and Stochastic Volatility," Papers 2310.14438, arXiv.org.
    13. Burbano, Vanessa & Padilla, Nicolas & Meier, Stephan, 2020. "Gender Differences in Preferences for Meaning at Work," IZA Discussion Papers 13053, Institute of Labor Economics (IZA).
    14. Robert Kubinec & Haillie Na‐Kyung Lee & Andrey Tomashevskiy, 2021. "Politically connected companies are less likely to shutdown due to COVID‐19 restrictions," Social Science Quarterly, Southwestern Social Science Association, vol. 102(5), pages 2155-2169, September.
    15. Barrington-Leigh, C.P., 2024. "The econometrics of happiness: Are we underestimating the returns to education and income?," Journal of Public Economics, Elsevier, vol. 230(C).
    16. Hu, Guanyu, 2021. "Spatially varying sparsity in dynamic regression models," Econometrics and Statistics, Elsevier, vol. 17(C), pages 23-34.
    17. Jan Prüser & Florian Huber, 2024. "Nonlinearities in macroeconomic tail risk through the lens of big data quantile regressions," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 39(2), pages 269-291, March.
    18. Salvatore Nunnari & Massimiliano Pozzi, 2022. "Meta-Analysis of Inequality Aversion Estimates," CESifo Working Paper Series 9851, CESifo.
    19. Andreas Kryger Jensen & Claus Thorn Ekstrøm, 2021. "Quantifying the trendiness of trends," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 70(1), pages 98-121, January.
    20. Lauderdale, Benjamin E. & Bailey, Delia & Blumenau, Jack & Rivers, Douglas, 2020. "Model-based pre-election polling for national and sub-national outcomes in the US and UK," International Journal of Forecasting, Elsevier, vol. 36(2), pages 399-413.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:wly:envmet:v:34:y:2023:i:3:n:e2785. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: http://www.interscience.wiley.com/jpages/1180-4009/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.