IDEAS home Printed from https://ideas.repec.org/a/wly/envmet/v32y2021i1ne2654.html
   My bibliography  Save this article

Adjusting a finite population block kriging estimator for imperfect detection

Author

Listed:
  • Matt Higham
  • Jay Ver Hoef
  • Lisa Madsen
  • Andy Aderman

Abstract

A finite population version of block kriging (FPBK) estimates a total or a mean when there is perfect detection of population units. However, many environmental datasets challenge the assumption of perfect detection. We consider two extensions of FPBK that incorporate imperfect detection. Spatial population estimator with detection: ratio then add (SPEDRA) adjusts observed counts by the estimated detection probability prior to spatial modeling. Spatial population estimator with detection: add then ratio (SPEDAR) uses spatial modeling on observed counts and then adjusts by mean detection probability. Unlike classical sampling approaches such as simple random sampling, SPEDRA and SPEDAR allow for spatial correlation among counts, and, being moment‐based, are less computationally intensive than a fully Bayesian model. Both SPEDRA and SPEDAR perform similarly in some simulation settings and give comparable estimates for a moose population total when applied to data from Togiak National Wildlife Refuge (AK). In settings where detection probability varies widely across sites, however, SPEDRA outperforms SPEDAR in reducing root mean square prediction error. We recommend SPEDRA in surveys with imperfect detection because it is more theoretically sound and generally performs better.

Suggested Citation

  • Matt Higham & Jay Ver Hoef & Lisa Madsen & Andy Aderman, 2021. "Adjusting a finite population block kriging estimator for imperfect detection," Environmetrics, John Wiley & Sons, Ltd., vol. 32(1), February.
  • Handle: RePEc:wly:envmet:v:32:y:2021:i:1:n:e2654
    DOI: 10.1002/env.2654
    as

    Download full text from publisher

    File URL: https://doi.org/10.1002/env.2654
    Download Restriction: no

    File URL: https://libkey.io/10.1002/env.2654?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Péter Sólymos & Subhash Lele & Erin Bayne, 2012. "Conditional likelihood approach for analyzing single visit abundance survey data in the presence of zero inflation and detection error," Environmetrics, John Wiley & Sons, Ltd., vol. 23(2), pages 197-205, March.
    2. Jay M. Ver Hoef, 2012. "Who Invented the Delta Method?," The American Statistician, Taylor & Francis Journals, vol. 66(2), pages 124-127, May.
    3. Alessandro Vagheggini & Francesca Bruno & Daniela Cocchi, 2016. "A competitive design‐based spatial predictor," Environmetrics, John Wiley & Sons, Ltd., vol. 27(8), pages 454-465, December.
    4. White, Halbert, 1982. "Maximum Likelihood Estimation of Misspecified Models," Econometrica, Econometric Society, vol. 50(1), pages 1-25, January.
    5. Alec M. Chan‐Golston & Sudipto Banerjee & Mark S. Handcock, 2020. "Bayesian inference for finite populations under spatial process settings," Environmetrics, John Wiley & Sons, Ltd., vol. 31(3), May.
    6. Lorenzo Fattorini & Piermaria Corona & Gherardo Chirici & Maria Chiara Pagliarella, 2015. "Design‐based strategies for sampling spatial units from regular grids with applications to forest surveys, land use, and land cover estimation," Environmetrics, John Wiley & Sons, Ltd., vol. 26(3), pages 216-228, May.
    7. Kenneth F Kellner & Robert K Swihart, 2014. "Accounting for Imperfect Detection in Ecology: A Quantitative Review," PLOS ONE, Public Library of Science, vol. 9(10), pages 1-8, October.
    8. Lisa Madsen & Dan Dalthorp & Manuela Maria Patrizia Huso & Andy Aderman, 2020. "Estimating population size with imperfect detection using a parametric bootstrap," Environmetrics, John Wiley & Sons, Ltd., vol. 31(3), May.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. P.A.V.B. Swamy & I-Lok Chang & Jatinder S. Mehta & William H. Greene & Stephen G. Hall & George S. Tavlas, 2016. "Removing Specification Errors from the Usual Formulation of Binary Choice Models," Econometrics, MDPI, vol. 4(2), pages 1-21, June.
    2. Carlo Altavilla & Raffaella Giacomini & Giuseppe Ragusa, 2017. "Anchoring the yield curve using survey expectations," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 32(6), pages 1055-1068, September.
    3. Fernando Rios-Avila & Gustavo Canavire-Bacarreza, 2018. "Standard-error correction in two-stage optimization models: A quasi–maximum likelihood estimation approach," Stata Journal, StataCorp LP, vol. 18(1), pages 206-222, March.
    4. Sandy Fréret & Denis Maguain, 2017. "The effects of agglomeration on tax competition: evidence from a two-regime spatial panel model on French data," International Tax and Public Finance, Springer;International Institute of Public Finance, vol. 24(6), pages 1100-1140, December.
    5. Ai, Chunrong & Chen, Xiaohong, 2007. "Estimation of possibly misspecified semiparametric conditional moment restriction models with different conditioning variables," Journal of Econometrics, Elsevier, vol. 141(1), pages 5-43, November.
    6. Gregory, Allan W. & McCurdy, Thomas H., 1986. "The unbiasedness hypothesis in the forward foreign exchange market: A specification analysis with application to France, Italy, Japan, the United Kingdom and West Germany," European Economic Review, Elsevier, vol. 30(2), pages 365-381, April.
    7. B. Praag & T. Dijkstra & J. Velzen, 1985. "Least-squares theory based on general distributional assumptions with an application to the incomplete observations problem," Psychometrika, Springer;The Psychometric Society, vol. 50(1), pages 25-36, March.
    8. Reischmann, Markus, 2016. "Creative accounting and electoral motives: Evidence from OECD countries," Journal of Comparative Economics, Elsevier, vol. 44(2), pages 243-257.
    9. Czudaj Robert L., 2020. "The role of uncertainty on agricultural futures markets momentum trading and volatility," Studies in Nonlinear Dynamics & Econometrics, De Gruyter, vol. 24(3), pages 1-39, June.
    10. Vassilios Babalos & Mehmet Balcilar & Rangan Gupta, 2014. "Revisiting Herding Behavior in REITs: A Regime-Switching Approach," Working Papers 201448, University of Pretoria, Department of Economics.
    11. Topi Miettinen & Sigrid Suetens, 2008. "Communication and Guilt in a Prisoner's Dilemma," Journal of Conflict Resolution, Peace Science Society (International), vol. 52(6), pages 945-960, December.
    12. Towfiqul Islam Khan & Mashfique Ibne Akbar, 2015. "Illicit Financial Flow in view of Financing the Post-2015 Development Agenda," Southern Voice Occasional Paper 25, Southern Voice.
    13. Catherine Doz & Domenico Giannone & Lucrezia Reichlin, 2012. "A Quasi–Maximum Likelihood Approach for Large, Approximate Dynamic Factor Models," The Review of Economics and Statistics, MIT Press, vol. 94(4), pages 1014-1024, November.
    14. Potrafke, Niklas, 2019. "Electoral cycles in perceived corruption: International empirical evidence," Journal of Comparative Economics, Elsevier, vol. 47(1), pages 215-224.
    15. Corradi, Valentina & Swanson, Norman R., 2004. "A test for the distributional comparison of simulated and historical data," Economics Letters, Elsevier, vol. 85(2), pages 185-193, November.
    16. Hendrik Thiel & Stephan L. Thomsen, 2015. "Individual Poverty Paths and the Stability of Control-Perception," SOEPpapers on Multidisciplinary Panel Data Research 794, DIW Berlin, The German Socio-Economic Panel (SOEP).
    17. Arzheimer, Kai & Evans, Jocelyn, 2010. "Bread and butter à la française: Multiparty forecasts of the French legislative vote (1981-2007)," International Journal of Forecasting, Elsevier, vol. 26(1), pages 19-31, January.
    18. repec:ebl:ecbull:v:3:y:2008:i:5:p:1-7 is not listed on IDEAS
    19. Tobias Hartl & Roland Jucknewitz, 2022. "Approximate state space modelling of unobserved fractional components," Econometric Reviews, Taylor & Francis Journals, vol. 41(1), pages 75-98, January.
    20. Hao Wu & Michael Browne, 2015. "Random Model Discrepancy: Interpretations and Technicalities (A Rejoinder)," Psychometrika, Springer;The Psychometric Society, vol. 80(3), pages 619-624, September.
    21. Tue Gørgens & Allan Würtz, 2012. "Testing a parametric function against a non‐parametric alternative in IV and GMM settings," Econometrics Journal, Royal Economic Society, vol. 15(3), pages 462-489, October.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:wly:envmet:v:32:y:2021:i:1:n:e2654. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: http://www.interscience.wiley.com/jpages/1180-4009/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.