IDEAS home Printed from https://ideas.repec.org/a/wly/ajagec/v106y2024i3p1241-1273.html
   My bibliography  Save this article

Farm‐level responses to weather trends: A structural model

Author

Listed:
  • Stefan Wimmer
  • Christian Stetter
  • Jonas Schmitt
  • Robert Finger

Abstract

Assessing the effects of weather and climate on agricultural production is crucial for designing policies related to climate change adaptation and mitigation. A large body of literature has identified the detrimental effects of climate change on crop yields worldwide, and farm‐level adaptation has been shown to mitigate the adverse effects on agricultural production. In this study, we employ a structural model to examine farm production responses to ongoing weather trends. We investigate how farmers adjust output and input decisions by estimating a system of output supply and input demand functions, controlling for nonrandom crop selection. Using panel data with 14,796 observations reflecting 1638 German crop farms (1996–2019), we find that both the expected and realized weather determine farmers' production decisions. In the event of a drought, the supply of most considered crops and the demand for fertilizer decrease. The drought shock has also lasting effects on farmers' production decisions, with a reduced supply of protein crops and an increased level of root crops production in subsequent years. These findings highlight the need to account for farm‐level production responses when assessing weather and climate impacts.

Suggested Citation

  • Stefan Wimmer & Christian Stetter & Jonas Schmitt & Robert Finger, 2024. "Farm‐level responses to weather trends: A structural model," American Journal of Agricultural Economics, John Wiley & Sons, vol. 106(3), pages 1241-1273, May.
  • Handle: RePEc:wly:ajagec:v:106:y:2024:i:3:p:1241-1273
    DOI: 10.1111/ajae.12421
    as

    Download full text from publisher

    File URL: https://doi.org/10.1111/ajae.12421
    Download Restriction: no

    File URL: https://libkey.io/10.1111/ajae.12421?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Moschini, Giancarlo, 1998. "The semiflexible almost ideal demand system," European Economic Review, Elsevier, vol. 42(2), pages 349-364, February.
    2. Pierre Mérel & Matthew Gammans, 2021. "Climate Econometrics: Can the Panel Approach Account for Long‐Run Adaptation?," American Journal of Agricultural Economics, John Wiley & Sons, vol. 103(4), pages 1207-1238, August.
    3. Ding, Ya & Schoengold, Karina & Tadesse, Tsegaye, 2009. "The Impact of Weather Extremes on Agricultural Production Methods: Does Drought Increase Adoption of Conservation Tillage Practices?," Journal of Agricultural and Resource Economics, Western Agricultural Economics Association, vol. 34(3), pages 1-17, December.
    4. A. Colin Cameron & Jonah B. Gelbach & Douglas L. Miller, 2008. "Bootstrap-Based Improvements for Inference with Clustered Errors," The Review of Economics and Statistics, MIT Press, vol. 90(3), pages 414-427, August.
    5. Konstantinos Chatzimichael & Margarita Genius & Vangelis Tzouvelekas, 2022. "Pesticide use, health impairments and economic losses under rational farmers behavior," American Journal of Agricultural Economics, John Wiley & Sons, vol. 104(2), pages 765-790, March.
    6. Xuhui Wang & Christoph Müller & Joshua Elliot & Nathaniel D. Mueller & Philippe Ciais & Jonas Jägermeyr & James Gerber & Patrice Dumas & Chenzhi Wang & Hui Yang & Laurent Li & Delphine Deryng & Christ, 2021. "Global irrigation contribution to wheat and maize yield," Nature Communications, Nature, vol. 12(1), pages 1-8, December.
    7. Robert G. Chambers & Daniel C. Voica, 2017. "“Decoupled” Farm Program Payments are Really Decoupled: The Theory," American Journal of Agricultural Economics, John Wiley & Sons, vol. 99(3), pages 773-782, April.
    8. Bruno Henry de Frahan & Alexandre Baudry & Rembert De Blander & Philippe Polomé & Richard Howitt, 2011. "Dairy farms without quotas in Belgium: estimation and simulation with a flexible cost function," European Review of Agricultural Economics, Oxford University Press and the European Agricultural and Applied Economics Publications Foundation, vol. 38(4), pages 469-495, October.
    9. Heidi Webber & Frank Ewert & Jørgen E. Olesen & Christoph Müller & Stefan Fronzek & Alex C. Ruane & Maryse Bourgault & Pierre Martre & Behnam Ababaei & Marco Bindi & Roberto Ferrise & Robert Finger & , 2018. "Diverging importance of drought stress for maize and winter wheat in Europe," Nature Communications, Nature, vol. 9(1), pages 1-10, December.
    10. Miroslav Trnka & Reimund P. Rötter & Margarita Ruiz-Ramos & Kurt Christian Kersebaum & Jørgen E. Olesen & Zdeněk Žalud & Mikhail A. Semenov, 2014. "Adverse weather conditions for European wheat production will become more frequent with climate change," Nature Climate Change, Nature, vol. 4(7), pages 637-643, July.
    11. Bareille, François & Chakir, Raja, 2023. "The impact of climate change on agriculture: A repeat-Ricardian analysis," Journal of Environmental Economics and Management, Elsevier, vol. 119(C).
    12. Feil, J.-H. & Anastassiadis, F. & Mußhoff, O. & Schilling, P., 2015. "Analysing Farmers’ Use of Price Hedging Instruments: An Experimental Approach," Proceedings “Schriften der Gesellschaft für Wirtschafts- und Sozialwissenschaften des Landbaues e.V.”, German Association of Agricultural Economists (GEWISOLA), vol. 50, March.
    13. Kaixing Huang & Nicholas Sim, 2021. "Adaptation May Reduce Climate Damage in Agriculture by Two Thirds," Journal of Agricultural Economics, Wiley Blackwell, vol. 72(1), pages 47-71, February.
    14. Li, Man, 2023. "Adaptation to expected and unexpected weather fluctuations: Evidence from Bangladeshi smallholder farmers," World Development, Elsevier, vol. 161(C).
    15. Kan, Iddo & Reznik, Ami & Kaminski, Jonathan & Kimhi, Ayal, 2023. "The impacts of climate change on cropland allocation, crop production, output prices and social welfare in Israel: A structural econometric framework," Food Policy, Elsevier, vol. 115(C).
    16. Juan Sesmero & Jacob Ricker-Gilbert & Aaron Cook, 2018. "How Do African Farm Households Respond to Changes in Current and Past Weather Patterns? A Structural Panel Data Analysis from Malawi," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 100(1), pages 115-144.
    17. Amer Ait Sidhoum & Teresa Serra & Laure Latruffe, 2020. "Measuring sustainability efficiency at farm level: a data envelopment analysis approach [Economic and environmental efficiency of district heating plants]," European Review of Agricultural Economics, Oxford University Press and the European Agricultural and Applied Economics Publications Foundation, vol. 47(1), pages 200-225.
    18. Yonas Alem & Mintewab Bezabih & Menale Kassie & Precious Zikhali, 2010. "Does fertilizer use respond to rainfall variability? Panel data evidence from Ethiopia," Agricultural Economics, International Association of Agricultural Economists, vol. 41(2), pages 165-175, March.
    19. JunJie Wu & Richard M. Adams & Catherine L. Kling & Katsuya Tanaka, 2004. "From Microlevel Decisions to Landscape Changes: An Assessment of Agricultural Conservation Policies," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 86(1), pages 26-41.
    20. Melissa Dell & Benjamin F. Jones & Benjamin A. Olken, 2014. "What Do We Learn from the Weather? The New Climate-Economy Literature," Journal of Economic Literature, American Economic Association, vol. 52(3), pages 740-798, September.
    21. Olivier Deschênes & Michael Greenstone, 2007. "The Economic Impacts of Climate Change: Evidence from Agricultural Output and Random Fluctuations in Weather," American Economic Review, American Economic Association, vol. 97(1), pages 354-385, March.
    22. Xiaomeng Cui & Wei Xie, 2022. "Adapting Agriculture to Climate Change through Growing Season Adjustments: Evidence from Corn in China," American Journal of Agricultural Economics, John Wiley & Sons, vol. 104(1), pages 249-272, January.
    23. Jonathan Kaminski & Iddo Kan & Aliza Fleischer, 2013. "A Structural Land-Use Analysis of Agricultural Adaptation to Climate Change: A Proactive Approach," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 95(1), pages 70-93.
    24. Stefan Wimmer & Johannes Sauer, 2020. "Profitability Development and Resource Reallocation: The Case of Sugar Beet Farming in Germany," Journal of Agricultural Economics, Wiley Blackwell, vol. 71(3), pages 816-837, September.
    25. Jens Rommel & Julian Sagebiel & Marieke Cornelia Baaken & Jesús Barreiro-Hurlé & Douadia Bougherara & Luigi Cembalo & Marija Cerjak & Tajana Čop & Mikołaj Czajkowski & María Espinosa-Goded & Julia Höh, 2022. "Farmers' risk preferences in eleven European farming systems: A multi-country replication of Bocquého et al. (2014)," Working Papers 2022-24, Faculty of Economic Sciences, University of Warsaw.
    26. Nathan P. Hendricks & Aaron Smith & Daniel A. Sumner, 2014. "Crop Supply Dynamics and the Illusion of Partial Adjustment," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 96(5), pages 1469-1491.
    27. Chambers,Robert G. & Quiggin,John, 2000. "Uncertainty, Production, Choice, and Agency," Cambridge Books, Cambridge University Press, number 9780521785235.
    28. Ariel Ortiz-Bobea & Toby R. Ault & Carlos M. Carrillo & Robert G. Chambers & David B. Lobell, 2021. "Anthropogenic climate change has slowed global agricultural productivity growth," Nature Climate Change, Nature, vol. 11(4), pages 306-312, April.
    29. Marita Laukkanen & Céline Nauges, 2014. "Evaluating Greening Farm Policies: A Structural Model for Assessing Agri-environmental Subsidies," Land Economics, University of Wisconsin Press, vol. 90(3), pages 458-481.
    30. Paolo Sckokai & Daniele Moro, 2006. "Modeling the Reforms of the Common Agricultural Policy for Arable Crops under Uncertainty," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 88(1), pages 43-56.
    31. Marc Nerlove, 1958. "Adaptive Expectations and Cobweb Phenomena," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 72(2), pages 227-240.
    32. Anthony Louis D'Agostino & Wolfram Schlenker, 2016. "Recent weather fluctuations and agricultural yields: implications for climate change," Agricultural Economics, International Association of Agricultural Economists, vol. 47(S1), pages 159-171, November.
    33. Robert G. Chambers & Daniel C. Voica, 2017. "“Decoupled” Farm Program Payments are Really Decoupled: The Theory," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 99(3), pages 773-782.
    34. Anne Lacroix & Alban Thomas, 2011. "Estimating the Environmental Impact of Land and Production Decisions with Multivariate Selection Rules and Panel Data," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 93(3), pages 780-798.
    35. Carlos Arnade & David Kelch, 2007. "Estimation of Area Elasticities from a Standard Profit Function," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 89(3), pages 727-737.
    36. Henningsen, Arne & Hamann, Jeff D., 2007. "systemfit: A Package for Estimating Systems of Simultaneous Equations in R," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 23(i04).
    37. Diewert, W. E. & Wales, T. J., 1988. "A normalized quadratic semiflexible functional form," Journal of Econometrics, Elsevier, vol. 37(3), pages 327-342, March.
    38. Erik Lichtenberg & David Zilberman, 1986. "The Econometrics of Damage Control: Why Specification Matters," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 68(2), pages 261-273.
    39. Frederic Ang, 2019. "Analyzing Components of Productivity Growth Using the Bennet-Lowe Indicator: An Application to Welsh Sheep Farms," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 101(4), pages 1262-1276.
    40. Deepak K. Ray & James S. Gerber & Graham K. MacDonald & Paul C. West, 2015. "Climate variation explains a third of global crop yield variability," Nature Communications, Nature, vol. 6(1), pages 1-9, May.
    41. Stijn Reinhard & C.A. Knox Lovell & Geert Thijssen, 1999. "Econometric Estimation of Technical and Environmental Efficiency: An Application to Dutch Dairy Farms," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 81(1), pages 44-60.
    42. Harold Hotelling, 1932. "Edgeworth's Taxation Paradox and the Nature of Demand and Supply Functions," Journal of Political Economy, University of Chicago Press, vol. 40(5), pages 577-577.
    43. Spiegel, Alisa & Slijper, Thomas & de Mey, Yann & Meuwissen, Miranda P.M. & Poortvliet, P. Marijn & Rommel, Jens & Hansson, Helena & Vigani, Mauro & Soriano, Bárbara & Wauters, Erwin & Appel, Franzisk, 2021. "Resilience capacities as perceived by European farmers," Agricultural Systems, Elsevier, vol. 193(C).
    44. Obafèmi P. Koutchadé & Alain Carpentier & Fabienne Femenia, 2021. "Modeling Corners, Kinks, and Jumps in Crop Acreage Choices: Impacts of the EU Support to Protein Crops," American Journal of Agricultural Economics, John Wiley & Sons, vol. 103(4), pages 1502-1524, August.
    45. Chavas, Jean-Paul & Pope, Rulon D. & Kao, Robert S., 1983. "An Analysis Of The Role Of Futures Prices, Cash Prices And Government Programs In Acreage Response," Western Journal of Agricultural Economics, Western Agricultural Economics Association, vol. 8(1), pages 1-7, July.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wimmer, Stefan & Stetter, Christian & Schmitt, Jonas & Ringer, Robert, 2022. "Farm-level responses to weather trends," 96th Annual Conference, April 4-6, 2022, K U Leuven, Belgium 321221, Agricultural Economics Society - AES.
    2. François Bareille & Raja Chakir, 2024. "Structural identification of weather impacts on crop yields: Disentangling agronomic from adaptation effects," American Journal of Agricultural Economics, John Wiley & Sons, vol. 106(3), pages 989-1019, May.
    3. CARPENTIER, Alain & GOHIN, Alexandre & SCKOKAI, Paolo & THOMAS, Alban, 2015. "Economic modelling of agricultural production: past advances and new challenges," Review of Agricultural and Environmental Studies - Revue d'Etudes en Agriculture et Environnement (RAEStud), Institut National de la Recherche Agronomique (INRA), vol. 96(1), March.
    4. Luis Guillermo Becerra-Valbuena, 2021. "Droughts and Agricultural Adaptation to Climate Change," Working Papers halshs-03420657, HAL.
    5. Luis Guillermo Becerra-Valbuena, 2021. "Droughts and Agricultural Adaptation to Climate Change," PSE Working Papers halshs-03420657, HAL.
    6. Gaurav Arora & Hongli Feng & Christopher J. Anderson & David A. Hennessy, 2020. "Evidence of climate change impacts on crop comparative advantage and land use," Agricultural Economics, International Association of Agricultural Economists, vol. 51(2), pages 221-236, March.
    7. Bucheli, Janic & Dalhaus, Tobias & Finger, Robert, 2022. "Temperature effects on crop yields in heat index insurance," Food Policy, Elsevier, vol. 107(C).
    8. Hyunseok Kim & GianCarlo Moschini, 2018. "The Dynamics of Supply: U.S. Corn and Soybeans in the Biofuel Era," Land Economics, University of Wisconsin Press, vol. 94(4), pages 593-613.
    9. Sung, Jae-hoon & Miranowski, John A., 2015. "Adaptive Behavior of U.S. Farms to Climate and Risk," 2015 AAEA & WAEA Joint Annual Meeting, July 26-28, San Francisco, California 205787, Agricultural and Applied Economics Association.
    10. Xun Su & Minpeng Chen, 2022. "Econometric Approaches That Consider Farmers’ Adaptation in Estimating the Impacts of Climate Change on Agriculture: A Review," Sustainability, MDPI, vol. 14(21), pages 1-23, October.
    11. Ahmed, Musa Hasen & Tesfaye, Wondimagegn Mesfin & Gassmann, Franziska, 2022. "Within Growing Season Weather Variability and Land Allocation Decisions: Evidence from Maize Farmers in Ethiopia," 96th Annual Conference, April 4-6, 2022, K U Leuven, Belgium 321171, Agricultural Economics Society - AES.
    12. Cui, Xiaomeng & Zhong, Zheng, 2024. "Climate change, cropland adjustments, and food security: Evidence from China," Journal of Development Economics, Elsevier, vol. 167(C).
    13. Nicholas J. Pates & Nathan P. Hendricks, 2021. "Fields from Afar: Evidence of Heterogeneity in United States Corn Rotational Response from Remote Sensing Data," American Journal of Agricultural Economics, John Wiley & Sons, vol. 103(5), pages 1759-1782, October.
    14. Tao Xiang & Tariq H. Malik & Jack W. Hou & Jiliang Ma, 2022. "The Impact of Climate Change on Agricultural Total Factor Productivity: A Cross-Country Panel Data Analysis, 1961–2013," Agriculture, MDPI, vol. 12(12), pages 1-20, December.
    15. Musa Hasen Ahmed & Wondimagegn Mesfin Tesfaye & Franziska Gassmann, 2023. "Early growing season weather variation, expectation formation and agricultural land allocation decisions in Ethiopia," Journal of Agricultural Economics, Wiley Blackwell, vol. 74(1), pages 255-272, February.
    16. Steven M. Ramsey & Jason S. Bergtold & Jessica L. Heier Stamm, 2021. "Field‐Level Land‐Use Adaptation to Local Weather Trends," American Journal of Agricultural Economics, John Wiley & Sons, vol. 103(4), pages 1314-1341, August.
    17. Schmitt, Jonas & Offermann, Frank & Söder, Mareike & Frühauf, Cathleen & Finger, Robert, 2022. "Extreme weather events cause significant crop yield losses at the farm level in German agriculture," Food Policy, Elsevier, vol. 112(C).
    18. Zhao, Xin & Calvin, Katherine & Patel, Pralit & Abigail, Snyder & Wise, Marshall & Waldhoff, Stephanie & Hejazi, Mohamad & Edmonds, James, 2021. "Impacts of interannual climate and biophysical variability on global agriculture markets," Conference papers 333245, Purdue University, Center for Global Trade Analysis, Global Trade Analysis Project.
    19. Drogué, Sophie & Jacquet, Florence & Subervie, Julie, 2014. "Introduction: Farmer’s adaptation to environmental changes," Review of Agricultural and Environmental Studies - Revue d'Etudes en Agriculture et Environnement (RAEStud), Institut National de la Recherche Agronomique (INRA), vol. 95(1).
    20. Viaggi, Davide & Raggi, Meri & Gomez y Paloma, Sergio, 2011. "Farm-household investment behaviour and the CAP decoupling: Methodological issues in assessing policy impacts," Journal of Policy Modeling, Elsevier, vol. 33(1), pages 127-145, January.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:wly:ajagec:v:106:y:2024:i:3:p:1241-1273. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: https://doi.org/10.1111/(ISSN)1467-8276 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.