IDEAS home Printed from https://ideas.repec.org/a/wly/ajagec/v106y2024i1p306-329.html
   My bibliography  Save this article

Optimal index insurance and basis risk decomposition: an application to Kenya

Author

Listed:
  • Matthieu Stigler
  • David Lobell

Abstract

Index insurance is a promising tool to reduce the risk faced by farmers, but high basis risk, which arises from imperfect correlation between the index and individual farm yields, has limited its adoption to date. Improving adoption will require reducing one or both of the two fundamental sources of basis risk: the intrinsic heterogeneity within an insurance zone (zonal risk), and the lack of predictive accuracy of the index (design risk). Previous work has focused mostly on design risk, conflating the quality of the index with the quality of the zone. Consequently, there is currently no way to distinguish a “good index in a bad zone” from a “bad index in a good zone”. Here we investigate the relative roles of zonal and design risk, with two main contributions. First, using a formal decomposition of basis risk, we show that the optimal index is the first principal component of the correlation matrix of yields between fields. This provides a simple upper bound on the insurable basis risk that any index can reach within a given zone. Second, we use 10 m resolution satellite data on maize yields in Kenya to provide the first large‐scale empirical analysis of the extent of zonal versus design risk. Our results show a strong local heterogeneity in yields, underscoring the challenge of implementing index insurance in smallholder systems and the potential benefits of low‐cost yield measurement approaches that can enable more local definitions of insurance zones.

Suggested Citation

  • Matthieu Stigler & David Lobell, 2024. "Optimal index insurance and basis risk decomposition: an application to Kenya," American Journal of Agricultural Economics, John Wiley & Sons, vol. 106(1), pages 306-329, January.
  • Handle: RePEc:wly:ajagec:v:106:y:2024:i:1:p:306-329
    DOI: 10.1111/ajae.12375
    as

    Download full text from publisher

    File URL: https://doi.org/10.1111/ajae.12375
    Download Restriction: no

    File URL: https://libkey.io/10.1111/ajae.12375?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Daniel J. Clarke, 2016. "A Theory of Rational Demand for Index Insurance," American Economic Journal: Microeconomics, American Economic Association, vol. 8(1), pages 283-306, February.
    2. Jerry R. Skees & J. Roy Black & Barry J. Barnett, 1997. "Designing and Rating an Area Yield Crop Insurance Contract," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 79(2), pages 430-438.
    3. Shawn Cole & Xavier Gine & Jeremy Tobacman & Petia Topalova & Robert Townsend & James Vickery, 2013. "Barriers to Household Risk Management: Evidence from India," American Economic Journal: Applied Economics, American Economic Association, vol. 5(1), pages 104-135, January.
    4. Willemijn Vroege & Janic Bucheli & Tobias Dalhaus & Martin Hirschi & Robert Finger, 2021. "Insuring crops from space: the potential of satellite-retrieved soil moisture to reduce farmers’ drought risk exposure," European Review of Agricultural Economics, Oxford University Press and the European Agricultural and Applied Economics Publications Foundation, vol. 48(2), pages 266-314.
    5. Nathaniel D. Jensen & Christopher B. Barrett & Andrew G. Mude, 2016. "Index Insurance Quality and Basis Risk: Evidence from Northern Kenya," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 98(5), pages 1450-1469.
    6. Michael T. Norton & Calum Turvey & Daniel Osgood, 2013. "Quantifying spatial basis risk for weather index insurance," Journal of Risk Finance, Emerald Group Publishing Limited, vol. 14(1), pages 20-34, January.
    7. Martin Browning & Thomas Crossley, 2009. "Are Two Cheap, Noisy Measures Better Than One Expensive, Accurate One?," American Economic Review, American Economic Association, vol. 99(2), pages 99-103, May.
    8. Jeffrey M Wooldridge, 2010. "Econometric Analysis of Cross Section and Panel Data," MIT Press Books, The MIT Press, edition 2, volume 1, number 0262232588, December.
    9. Yu, Jisang & Vandeveer, Monte & Volesky, Jerry D. & Harmoney, Keith, 2019. "Estimating the Basis Risk of Rainfall Index Insurance for Pasture, Rangeland, and Forage," Journal of Agricultural and Resource Economics, Western Agricultural Economics Association, vol. 44(1), January.
    10. Alexei Onatski, 2009. "Testing Hypotheses About the Number of Factors in Large Factor Models," Econometrica, Econometric Society, vol. 77(5), pages 1447-1479, September.
    11. M. Ritter & O. Mußhoff & M. Odening, 2014. "Minimizing Geographical Basis Risk of Weather Derivatives Using A Multi-Site Rainfall Model," Computational Economics, Springer;Society for Computational Economics, vol. 44(1), pages 67-86, June.
    12. Raushan Bokusheva, 2018. "Using copulas for rating weather index insurance contracts," Journal of Applied Statistics, Taylor & Francis Journals, vol. 45(13), pages 2328-2356, October.
    13. Ahmed Mushfiq Mobarak & Mark R. Rosenzweig, 2013. "Informal Risk Sharing, Index Insurance, and Risk Taking in Developing Countries," American Economic Review, American Economic Association, vol. 103(3), pages 375-380, May.
    14. Olivier Mahul, 2001. "Optimal Insurance Against Climatic Experience," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 83(3), pages 593-604.
    15. Michael Carter & Alain de Janvry & Elisabeth Sadoulet & Alexandros Sarris, 2017. "Index Insurance for Developing Country Agriculture: A Reassessment," Annual Review of Economics, Annual Reviews, vol. 9(1), pages 421-438, October.
    16. Jushan Bai, 2003. "Inferential Theory for Factor Models of Large Dimensions," Econometrica, Econometric Society, vol. 71(1), pages 135-171, January.
    17. Shawn Cole & Xavier Giné & James Vickery, 2017. "How Does Risk Management Influence Production Decisions? Evidence from a Field Experiment," The Review of Financial Studies, Society for Financial Studies, vol. 30(6), pages 1935-1970.
    18. Bai, Jushan & Ng, Serena, 2006. "Evaluating latent and observed factors in macroeconomics and finance," Journal of Econometrics, Elsevier, vol. 131(1-2), pages 507-537.
    19. David B Lobell & George Azzari & Marshall Burke & Sydney Gourlay & Zhenong Jin & Talip Kilic & Siobhan Murray, 2020. "Eyes in the Sky, Boots on the Ground: Assessing Satellite‐ and Ground‐Based Approaches to Crop Yield Measurement and Analysis," American Journal of Agricultural Economics, John Wiley & Sons, vol. 102(1), pages 202-219, January.
    20. Alexei Onatski, 2010. "Determining the Number of Factors from Empirical Distribution of Eigenvalues," The Review of Economics and Statistics, MIT Press, vol. 92(4), pages 1004-1016, November.
    21. Jensen, Nathaniel & Stoeffler, Quentin & Fava, Francesco & Vrieling, Anton & Atzberger, Clement & Meroni, Michele & Mude, Andrew & Carter, Michael, 2019. "Does the design matter? Comparing satellite-based indices for insuring pastoralists against drought," Ecological Economics, Elsevier, vol. 162(C), pages 59-73.
    22. Onatski, Alexei, 2012. "Asymptotics of the principal components estimator of large factor models with weakly influential factors," Journal of Econometrics, Elsevier, vol. 168(2), pages 244-258.
    23. Benson K Kenduiywo & Michael R Carter & Aniruddha Ghosh & Robert J Hijmans, 2021. "Evaluating the quality of remote sensing products for agricultural index insurance," PLOS ONE, Public Library of Science, vol. 16(10), pages 1-24, October.
    24. Michael Carter & Alain de Janvry & Elisabeth Sadoulet & Alexandros Sarris, 2017. "Index Insurance for Developing Country Agriculture: A Reassessment," Annual Review of Resource Economics, Annual Reviews, vol. 9(1), pages 421-438, October.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Matthieu Stigler & David Lobell, 2021. "Optimal index insurance and basis risk decomposition: an application to Kenya," Papers 2111.08601, arXiv.org, revised Mar 2023.
    2. Shin, Soye & Magnan, Nicholas & Mullally, Conner & Janzen, Sarah, 2022. "Demand for Weather Index Insurance among Smallholder Farmers under Prospect Theory," Journal of Economic Behavior & Organization, Elsevier, vol. 202(C), pages 82-104.
    3. Mengmeng Qiang & Manhong Shen & Guanjun Xia, 2023. "The effectiveness of weather index insurance in managing mariculture production risk," Australian Journal of Agricultural and Resource Economics, Australian Agricultural and Resource Economics Society, vol. 67(2), pages 245-262, April.
    4. Matthieu Stigler & David Lobell, 2020. "On the benefits of index insurance in US agriculture: a large-scale analysis using satellite data," Papers 2011.12544, arXiv.org, revised Nov 2021.
    5. Quentin Stoeffler & Michael Carter & Catherine Guirkinger & Wouter Gelade, 2022. "The Spillover Impact of Index Insurance on Agricultural Investment by Cotton Farmers in Burkina Faso," The World Bank Economic Review, World Bank, vol. 36(1), pages 114-140.
    6. Matthieu Stigler & Apratim Dey & Andrew Hobbs & David Lobell, 2022. "With big data come big problems: pitfalls in measuring basis risk for crop index insurance," Papers 2209.14611, arXiv.org.
    7. Brownlees, Christian & Mesters, Geert, 2021. "Detecting granular time series in large panels," Journal of Econometrics, Elsevier, vol. 220(2), pages 544-561.
    8. Erwin Bulte & Rein Haagsma, 2021. "The Welfare Effects of Index-Based Livestock Insurance: Livestock Herding on Communal Lands," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 78(4), pages 587-613, April.
    9. Stoeffler, Quentin & Opuz, Gülce, 2022. "Price, information and product quality: Explaining index insurance demand in Burkina Faso," Food Policy, Elsevier, vol. 108(C).
    10. Pilar Poncela & Esther Ruiz, 2016. "Small- Versus Big-Data Factor Extraction in Dynamic Factor Models: An Empirical Assessment," Advances in Econometrics, in: Dynamic Factor Models, volume 35, pages 401-434, Emerald Group Publishing Limited.
    11. Lichtenberg, Erik & Iglesias, Eva, 2022. "Index insurance and basis risk: A reconsideration," Journal of Development Economics, Elsevier, vol. 158(C).
    12. Sarah A. Janzen & Michael R. Carter & Munenobu Ikegami, 2021. "Can insurance alter poverty dynamics and reduce the cost of social protection in developing countries?," Journal of Risk & Insurance, The American Risk and Insurance Association, vol. 88(2), pages 293-324, June.
    13. Anita Mukherjee & Shawn Cole & Jeremy Tobacman, 2021. "Targeting weather insurance markets," Journal of Risk & Insurance, The American Risk and Insurance Association, vol. 88(3), pages 757-784, September.
    14. Lu, Xun & Su, Liangjun, 2016. "Shrinkage estimation of dynamic panel data models with interactive fixed effects," Journal of Econometrics, Elsevier, vol. 190(1), pages 148-175.
    15. Boyd, Chris M. & Bellemare, Marc F., 2022. "Why not insure prices? Experimental evidence from Peru," Journal of Economic Behavior & Organization, Elsevier, vol. 202(C), pages 580-631.
    16. Ceballos, Francisco & Robles, Miguel, 2020. "Demand heterogeneity for index-based insurance: The case for flexible products," Journal of Development Economics, Elsevier, vol. 146(C).
    17. Jensen, Nathaniel & Stoeffler, Quentin & Fava, Francesco & Vrieling, Anton & Atzberger, Clement & Meroni, Michele & Mude, Andrew & Carter, Michael, 2019. "Does the design matter? Comparing satellite-based indices for insuring pastoralists against drought," Ecological Economics, Elsevier, vol. 162(C), pages 59-73.
    18. Mogge, Lukas, 2023. "A District-Level Analysis of the Effect of Risk Exposure on the Demand for Index Insurance in Mongolia," Ruhr Economic Papers 1018, RWI - Leibniz-Institut für Wirtschaftsforschung, Ruhr-University Bochum, TU Dortmund University, University of Duisburg-Essen.
    19. Stigler, Matthieu M. & Lobell, David, 2020. "Suitability of index insurance: new insights from satellite data," 2020 Annual Meeting, July 26-28, Kansas City, Missouri 304663, Agricultural and Applied Economics Association.
    20. Elena Serfilippi & Michael Carter & Catherine Guirkinger, 2018. "Insurance Contracts when Individuals “Greatly Value” Certainty: Results from a Field Experiment in Burkina Faso," NBER Working Papers 25026, National Bureau of Economic Research, Inc.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:wly:ajagec:v:106:y:2024:i:1:p:306-329. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: https://doi.org/10.1111/(ISSN)1467-8276 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.