IDEAS home Printed from https://ideas.repec.org/a/spr/waterr/v37y2023i10d10.1007_s11269-023-03537-6.html
   My bibliography  Save this article

Adoption and shift of water-saving strategies to policy shock: based on social-ecological system analysis

Author

Listed:
  • Linjing Ren

    (Northwestern Polytechnical University)

  • Xiaojun Yang

    (Xi’an Jiaotong University)

Abstract

Water scarcity is a global issue due to climate change and increasing water demand. Water pricing policy is a critical instrument to stimulate farmers’ water-saving actions. Different types of water-saving behaviors are closely related and interactional. It is thus necessary to study multiple water-saving behaviors together and their dynamic transformation with intensification of policy shock. Besides, whether the policy could work well depends much on the social-ecological system where farmers are embedded. This paper studies how social-ecological system impacts farmers’ choice from multiple water-saving strategies and their shift of response strategies with further increase in water price. A field survey was conducted in semi-arid area of northwestern China that has suffered from severe water shortage and human-land conflicts for a long time. The results show that adoption of active-negative strategy rather than passive water-saving strategy is affected by productivity and predictability of resource system, number of users, norms, social capital, and collective choice rules. Adoption of active-positive strategy depends much on relative size and productivity of resource system, predictability of system dynamics, mobility of resource units, number of users, norms, social capital, and monitoring and sanctioning process. However, their effects have disparities, or are even opposite under different intensities of policy shock. When policy shock intensifies, mobility of resource units, number of users, resource importance, and monitoring and sanctioning process are identified as key factors to degrade farmers’ water-saving strategy rather than maintain their original strategy. Both the size of resource system and the quality of social network promote farmers to upgrade response strategy. The results indicate that there is a complicated relationship between policy shock and water-saving responses in the framework of social-ecological system, explained by a series of mechanisms. The findings provide valuable implications for optimizing water pricing mechanism, designing targeted measures, and developing effective governance environment.

Suggested Citation

  • Linjing Ren & Xiaojun Yang, 2023. "Adoption and shift of water-saving strategies to policy shock: based on social-ecological system analysis," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 37(10), pages 4015-4037, August.
  • Handle: RePEc:spr:waterr:v:37:y:2023:i:10:d:10.1007_s11269-023-03537-6
    DOI: 10.1007/s11269-023-03537-6
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11269-023-03537-6
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11269-023-03537-6?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. You, Jing, 2014. "Risk, under-investment in agricultural assets and dynamic asset poverty in rural China," China Economic Review, Elsevier, vol. 29(C), pages 27-45.
    2. Mi, Qiao & Li, Xiandong & Li, Xianmei & Yu, Guoxin & Gao, Jianzhong, 2021. "Cotton farmers' adaptation to arid climates: Waiting times to adopt water-saving technology," Agricultural Water Management, Elsevier, vol. 244(C).
    3. Karina Schoengold & David L. Sunding, 2014. "The impact of water price uncertainty on the adoption of precision irrigation systems," Agricultural Economics, International Association of Agricultural Economists, vol. 45(6), pages 729-743, November.
    4. Harper, Jayson K. & Roth, Gregory W. & Garalejić, Bogdan & Škrbić, Nikola, 2018. "Programs to promote adoption of conservation tillage: A Serbian case study," Land Use Policy, Elsevier, vol. 78(C), pages 295-302.
    5. Javier Martínez-Dalmau & Carlos Gutiérrez-Martín & Alfonso Expósito & Julio Berbel, 2023. "Analysis of Water Pricing Policy Effects in a Mediterranean Basin Through a Hydroeconomic Model," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 37(4), pages 1599-1618, March.
    6. Chokri Dridi & Madhu Khanna, 2005. "Irrigation Technology Adoption and Gains from Water Trading under Asymmetric Information," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 87(2), pages 289-301.
    7. Zhou, Xinyao & Zhang, Yongqiang & Sheng, Zhuping & Manevski, Kiril & Andersen, Mathias N. & Han, Shumin & Li, Huilong & Yang, Yonghui, 2021. "Did water-saving irrigation protect water resources over the past 40 years? A global analysis based on water accounting framework," Agricultural Water Management, Elsevier, vol. 249(C).
    8. Masserini Lucio & Romano Giulia & Corsini Lorenzo, 2018. "Investigating Attitudes towards Water Savings, Price Increases, and Willingness to Pay among Italian University Students," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 32(12), pages 4123-4138, September.
    9. Gebretsadik, Kidanemariam Abreha & Romstad, Eirik, 2020. "Climate and farmers’ willingness to pay for improved irrigation water supply," World Development Perspectives, Elsevier, vol. 20(C).
    10. Shahbaz Mushtaq, 2012. "Exploring Synergies Between Hardware and Software Interventions on Water Savings in China: Farmers’ Response to Water Usage and Crop Production," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 26(11), pages 3285-3300, September.
    11. Nicod, T. & Bathfield, B. & Bosc, P.-M. & Promkhambut, A. & Duangta, K. & Chambon, B., 2020. "Households' livelihood strategies facing market uncertainties: How did Thai farmers adapt to a rubber price drop?," Agricultural Systems, Elsevier, vol. 182(C).
    12. Castillo, Gracia Maria Lanza & Engler, Alejandra & Wollni, Meike, 2021. "Planned behavior and social capital: Understanding farmers’ behavior toward pressurized irrigation technologies," Agricultural Water Management, Elsevier, vol. 243(C).
    13. Khachatryan, Hayk & Suh, Dong Hee & Xu, Wan & Useche, Pilar & Dukes, Michael D., 2019. "Towards sustainable water management: Preferences and willingness to pay for smart landscape irrigation technologies," Land Use Policy, Elsevier, vol. 85(C), pages 33-41.
    14. Cuimei Lv & Huiqin Li & Minhua Ling & Xi Guo & Zening Wu & Changkuan Gu & Yang Li, 2021. "An Innovative Emergy Quantification Method for Eco-economic Compensation for Agricultural Water Rights Trading," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 35(3), pages 775-792, February.
    15. Rejesus, Roderick M. & Palis, Florencia G. & Rodriguez, Divina Gracia P. & Lampayan, Ruben M. & Bouman, Bas A.M., 2011. "Impact of the alternate wetting and drying (AWD) water-saving irrigation technique: Evidence from rice producers in the Philippines," Food Policy, Elsevier, vol. 36(2), pages 280-288, April.
    16. Medellín-Azuara, J. & Howitt, R.E. & Harou, J.J., 2012. "Predicting farmer responses to water pricing, rationing and subsidies assuming profit maximizing investment in irrigation technology," Agricultural Water Management, Elsevier, vol. 108(C), pages 73-82.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Chenle Xue & Dan Qiao & Noshaba Aziz, 2022. "Influence of Natural Disaster Shock and Collective Action on Farmland Transferees’ No-Tillage Technology Adoption in China," Land, MDPI, vol. 11(9), pages 1-23, September.
    2. Cao, Zhaodan & Zhu, Tingju & Cai, Ximing, 2023. "Hydro-agro-economic optimization for irrigated farming in an arid region: The Hetao Irrigation District, Inner Mongolia," Agricultural Water Management, Elsevier, vol. 277(C).
    3. Sauer, Johannes & Zilberman, David, 2009. "Innovation Behaviour At Farm Level – Selection And Identification," 83rd Annual Conference, March 30 - April 1, 2009, Dublin, Ireland 51073, Agricultural Economics Society.
    4. Garbero, Alessandra & Songsermsawas, Tisorn, 2016. "Impact of modern irrigation on household production and welfare outcomes: Evidence from the PASIDP project in Ethiopia," 2016 Annual Meeting, July 31-August 2, Boston, Massachusetts 235949, Agricultural and Applied Economics Association.
    5. Margarita Genius & Phoebe Koundouri & Céline Nauges & Vangelis Tzouvelekas, 2014. "Information Transmission in Irrigation Technology Adoption and Diffusion: Social Learning, Extension Services, and Spatial Effects," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 96(1), pages 328-344.
    6. Mattoussi, Wided & Mattoussi, Foued & Larnaout, Afrah, 2023. "Optimal subsidization for the adoption of new irrigation technologies," Economic Analysis and Policy, Elsevier, vol. 78(C), pages 1126-1141.
    7. Martey, Edward & Etwire, Prince M. & Adombilla, Ramson & Abebrese, Samuel O., 2023. "Information constraint and farmers’ willingness to pay for an irrigation scheduling tool," Agricultural Water Management, Elsevier, vol. 276(C).
    8. Mohamed Ghali & Maha Ben Jaballah & Nejla Ben Arfa & Annie Sigwalt, 2022. "Analysis of factors that influence adoption of agroecological practices in viticulture," Review of Agricultural, Food and Environmental Studies, Springer, vol. 103(3), pages 179-209, September.
    9. Koundouri, Phoebe & Nauges, Céline & Tzouvelekas, Vangelis, 2009. "The Effect of Production Uncertainty and Information Dissemination of the Diffusion of Irrigation Technologies," TSE Working Papers 09-032, Toulouse School of Economics (TSE).
    10. Lijuan Xu & Abbas Ali Chandio & Jingyi Wang & Yuansheng Jiang, 2022. "Does Farmland Tenancy Improve Household Asset Allocation? Evidence from Rural China," Land, MDPI, vol. 12(1), pages 1-22, December.
    11. Hang Xu & Rui Yang & Jianfeng Song, 2021. "Agricultural Water Use Efficiency and Rebound Effect: A Study for China," IJERPH, MDPI, vol. 18(13), pages 1-16, July.
    12. Paudel, G. & Krishna, V. & McDonald, A., 2018. "Why some inferior technologies succeed? Examining the diffusion and impacts of rotavator tillage in Nepal Terai," 2018 Conference, July 28-August 2, 2018, Vancouver, British Columbia 277149, International Association of Agricultural Economists.
    13. à lvarez-Albelo, Carmen D. & Hernández-Martín, Raúl & Padrón-Fumero, Noemi, 2020. "The effects on tourism of airfare subsidies for residents: The key role of packaging strategies," Journal of Air Transport Management, Elsevier, vol. 84(C).
    14. Zarezadeh, Mahboubeh & Delavar, Majid & Morid, Saeed & Abbasi, Hamid, 2023. "Evaluating the effectiveness of macro-level water-saving policies based on water footprint sustainability indicators," Agricultural Water Management, Elsevier, vol. 282(C).
    15. Diana Martínez-Arteaga & Nolver Atanacio Arias Arias & Aquiles E. Darghan & Dursun Barrios, 2023. "Identification of Influential Factors in the Adoption of Irrigation Technologies through Neural Network Analysis: A Case Study with Oil Palm Growers," Agriculture, MDPI, vol. 13(4), pages 1-13, April.
    16. Bennie Grové & Johannes Jacobus Bezuidenhout & Nicolette Matthews, 2023. "Farm-level Hydroeconomic Analysis of Alternative Water Tariff Charges Using a Hybrid Solution Method," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 37(12), pages 4679-4692, September.
    17. Kexiao Xie & Yuerui Zhu & Yongqiang Ma & Youcheng Chen & Shuiji Chen & Zhidan Chen, 2022. "Willingness of Tea Farmers to Adopt Ecological Agriculture Techniques Based on the UTAUT Extended Model," IJERPH, MDPI, vol. 19(22), pages 1-14, November.
    18. Elizabeth Canales & Jason S. Bergtold & Jeffery R. Williams, 2020. "Conservation practice complementarity and timing of on‐farm adoption," Agricultural Economics, International Association of Agricultural Economists, vol. 51(5), pages 777-792, September.
    19. Yihan Chen & Wen Xiang & Minjuan Zhao, 2024. "Impacts of Capital Endowment on Farmers’ Choices in Fertilizer-Reduction and Efficiency-Increasing Technologies (Preferences, Influences, and Mechanisms): A Case Study of Apple Farmers in the Province," Agriculture, MDPI, vol. 14(1), pages 1-25, January.
    20. Kerstin Schreiber & Bernard Soubry & Carley Dove-McFalls & Graham K. MacDonald, 2023. "Untangling the role of social relationships for overcoming challenges in local food systems: a case study of farmers in Québec, Canada," Agriculture and Human Values, Springer;The Agriculture, Food, & Human Values Society (AFHVS), vol. 40(1), pages 141-156, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:waterr:v:37:y:2023:i:10:d:10.1007_s11269-023-03537-6. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.